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Abstract. Interacting particle systems are known for their ability to generate large-scale self-
organized structures from simple local interaction rules between each agent and its neighbors.
In addition to studying their emergent behavior, a main focus of the mathematical community
has been concentrated on deriving their large-population limit. In particular, the mean-field
limit consists of describing the limit system by its population density in the product space of
positions and labels. The strategy to derive such limits is often based on a careful combination
of methods ranging from analysis of PDEs and stochastic analysis, to kinetic equations and
graph theory. In this article, we focus on a generalization of multi-agent systems that includes
higher-order interactions, which has largely captured the attention of the applied community
in the last years. In such models, interactions between individuals are no longer assumed to
be binary (i.e. between a pair of particles). Instead, individuals are allowed to interact by
groups so that a full group jointly generates a non-linear force on any given individual. The
underlying graph of connections is then replaced by a hypergraph, which we assume to be
dense, but possibly non-uniform and of unbounded rank. For the first time in the literature,
we show that when the interaction kernels are regular enough, then the mean-field limit is
determined by a limiting Vlasov-type equation, where the hypergraph limit is encoded by a so-
called UR-hypergraphon (unbounded-rank hypergraphon), and where the resulting mean-field
force admits infinitely-many orders of interactions.
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1. Introduction

The study of collective behavior has attracted much attention in the last twenty years, includ-
ing within the mathematical community. Its numerous applications include among many others
the study of animal group coordination, opinion formation and cell organization in tissues. Both
theoretical and experimental communities have tackled the question of self-organization, in the
aim of elucidating how global collective patterns emerge in a group driven by only local inter-
actions. To address this question, mathematical models have been developed, relying mainly
on two important hypotheses:

Hypothesis 1 (Exchangeability). The particles are assumed to be indistinguishable (or ex-
changeable), that is that exchanging any two particles does not modify the overall dynamics of
the group. In other words, the population is composed of identical particles.

Hypothesis 2 (Pairwise interaction). The particles are assumed to interact pairwise. More
precisely, this implies that the influence of the group on each given particle is viewed as the
superposition of the pairwise interactions between this particle and all remaining ones.

Hypotheses 1 and 2 can be used to write a simple general model giving the evolution of each
particle’s position (or opinion, or velocity, etc.) XN

i ∈ Rd as the result of pairwise interactions
with all remaining particles:

dXN
i (t)

dt
=

1

N

N∑
j=1

K(XN
i (t), XN

j (t)), i ∈ {1, . . . , N}. (1.1)

Here, because of Hypothesis 1, the interaction weights are all equal (normalized to 1
N ), and

due to Hypothesis 2, the total effect of the group on the evolution of XN
i is modeled by the

sum of the pairwise interactions.
Although this model provides a good description of many multi-agent systems with indistin-

guishable particles, in other applications, Hypotheses 1 and 2 need to be revised. One way to
model the non-exchangeable nature of the particles (i.e. to remove Hypothesis 1) is to describe
their pairwise interaction via an underlying weighted graph. This leads to the system

dXN
i (t)

dt
=

N∑
j=1

wNijK(XN
i (t), XN

j (t)), i ∈ {1, . . . , N}, (1.2)

in which the interaction between two particles i and j no longer depends only on their positions
XN
i and XN

j in the state space (via the interaction kernel K) but also on their individual labels

i and j, via the weight wNij . Agents’ labels play the role of the vertices VN of the underlying

graph GN = (VN , EN ,WN ), by setting EN := {1, . . . , N}, while directed edges VN := {(i, j) ∈
V 2
N : wNij ̸= 0} are entirely determined by their adjacency matrix WN := (wNij )1≤i,j≤N .
A growing body of works has subsequently introduced a generalization of this second model in

order to remove Hypothesis 2, relying on the theory of hypergraphs [7, 8, 14]. These approaches
are based on the idea that the basic interaction unit of many dynamical systems includes more
than two nodes [55, 67, 59, 69, 73, 74, 75, 76]. Applications are numerous and involve the
modeling of opinion dynamics [17, 25, 60, 68], contagion propagation [7, 57], synchronization
of oscillators [75, 74, 73, 55, 76], animal communication [38] and evolutionary game dynamics
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[7, 57]. This leads to the following multi-agent system with high-order interactions, which will
be the focus of the present article:

dXN
i (t)

dt
=

N−1∑
ℓ=1

N∑
j1,...,jℓ=1

wℓ,Nij1···jℓ Kℓ(X
N
i (t), XN

j1 (t), . . . , X
N
jℓ
(t)),

XN
i (0) = XN

i,0, i ∈ {1, . . . , N}.
(1.3)

The above system (1.3) describes the evolution of N agents with states XN
i = XN

i (t) ∈ Rd.
Interactions among agents are given as the superposition of all possible (ℓ+1)-body interactions.
The functions Kℓ = Kℓ(x, x1, . . . , xℓ) represent the (ℓ + 1)-body interaction kernels, and each

weight wℓ,Nij1···jℓ describes the underlying (ℓ + 1)-body couplings or connections among agents.

More precisely, the tensor (wℓ,Nij1···jℓ)1≤i,j1...jℓ≤N can be seen as the adjacency tensor of a (ℓ+1)-
uniform hypergraph describing the underlying communication architecture among agents. In
particular, we note that the above sum moves over all possible types of multi-body interactions
ranging from ℓ = 1 (i.e., pairwise interactions as in Equation (1.2)) to ℓ = N − 1 (i.e., full
group interactions). For modeling purposes, we neglect summands with ℓ ≥ N which would
necessarily lead to undesired self-interaction. For similar reasons, we shall always assume that

wℓ,Nij1···jℓ = 0 whenever i ∈ {j1, . . . , jℓ}.
The goal of the present article is to derive the the mean-field limit of the multi-agent system

(1.3) as N tends to infinity. Our result studies a form of “propagation of chaos” for this highly
non-exchangeable multi-agent system and it provides quantitative convergence rates as N tends
to infinity towards the associated Vlasov equation:{

∂tµ
ξ
t + divx(Fw[µt](·, ξ)µξt ) = 0, t ≥ 0, x ∈ Rd, ξ ∈ [0, 1],

µξt=0 = µξ0.
(1.4)

Here, (µξt )ξ∈[0,1] ⊂ P(Rd) is a measurable family of probability measures parametrized by a
continuous label ξ ∈ [0, 1] for any t ≥ 0. Note that all existing individuals contribute to jointly
generate a mean-field force onto individuals with label ξ of the form:

Fw[µt](x, ξ) :=

∞∑
ℓ=1

ˆ
[0,1]ℓ

wℓ(ξ, ξ1, . . . , ξℓ)

×
(ˆ

Rdℓ

Kℓ(x, x1, . . . , xℓ) dµ
ξ1
t (x1) · · · dµξℓt (xℓ)

)
dξ1, . . . dξℓ.

(1.5)

Additionally, the above object w = (wℓ)ℓ∈N consists in a sequence of uniformly bounded func-
tions wℓ ∈ L∞([0, 1]ℓ+1). It describes, at the macroscopic scale, the connection among agents
via groups of fixed size ℓ+ 1 for every ℓ ∈ N.

Inspired by the classical limit theory of dense graphs (i.e., graphons [54]), and their subse-
quent extensions to sparse graphs (i.e., Lp graphons [19, 20], graphops [5] and s-graphons[48]),
some recent works have also proposed limit theories that are valid for the broader class of dense
hypergraphs [30, 66, 77]. On the one hand, the case of hypergraphs with uniform cardinality
k ∈ N was treated in [30, 77] using the notion of k-uniform hypergraphons, but a new doubling
of variables was introduced compared to the treatment of graphons, which complicates the study
of mean-field limits operating over these structures. On the other hand, the limit of non-uniform
hypergraphs with bounded ranks was recently considered in [78], where a multilinear extension
of graphops [5] was obtained. Lastly, in the more general setting of non-uniform hypergraphs
with unbounded rank, a limit theory of dense simplicial complexes was obtained in [66], which
exploits the concept of complexons. Simplicial complexes are a subclass of hypergraphs whose
hyperedges are closed under restrictions, that is, all subgroups of nodes forming a hyperedge
also form a smaller hyperedge. Their limiting objects were named complexon and consist of
a sequence w = (wℓ)ℓ∈N of equivalence classes (under a suitable quotient map) of uniformly
bounded functions wℓ ∈ L∞([0, 1]ℓ+1) with ℓ ∈ N.
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In this paper, we shall not restrict ourselves to coupling weights determined by complexons,
which are defined as the above-mentioned quotient objects, but we will rather exploit the
primitive non-quotient objects endowed with a suitable topology, which, for distinction with
the terminology in [66], we will call UR-hypergraphons, that is, hypergraphons of unbounded
rank (cf. Section 2.2). This framework allows considering hypergraphs and hypergraphons with
no a priori bound on the maximum hyperedge size.

Importantly, several studies have reported the frequent occurrence of large-size hyperedges
in hypergraphs constructed from real-world datasets. For instance, in [26], the authors studied
the hypergraph structure of fMRI data acquired among 77 subjects performing cognitively
demanding tasks. It was found that the majority of subjects have a hypergraph composed of one
large hyperedge and many small hyperedges, with a rough power law for the distribution of the
smaller sizes. More recently, a detailed analysis of hypergraphs coming from six different fields
(such as high-school contacts, email recipients, drug substances, or publication co-authors) have
revealed that hyperedge sizes follow a heavy-tail (power law) distribution [44, 45]. These studies
of real-world data highlight the importance of proposing and analyzing models for hypergraphs
of unbounded rank, i.e. hypergraphs whose largest hyperedge can potentially contain all the
hypergraph nodes.

While in most steps of this article (but not all), the coupling weights encoded by the hy-
pergraphs can be assumed to be quite general (supposing of course some natural summability
conditions), some more particular assumptions will be considered in the statement of our main
result. For readability, we thus present a list of sufficient assumptions for our main result to
hold, and expose Theorem 1.1 in this setting. As will be recalled throughout the article, not all
assumptions are in fact necessary, and the specific requirements for each result will be specified
in the corresponding statements. The following assumptions concern the interaction kernels,
the coupling weights and the initial data of the multi-agent system (1.3).

Assumption 1 (On the interaction kernels).

(i) (Bounded-Lipschitz interaction kernels):

Assume that Kℓ ∈ BL(Rd(ℓ+1)), i.e., there exist Bℓ, Lℓ > 0 such that

|Kℓ(x, x1, · · · , xℓ)| ≤ Bℓ. (1.6)

|Kℓ(x, x1, · · · , xℓ)−Kℓ(y, y1, . . . , yℓ)| ≤ Lℓ

(
|x− y|+

ℓ∑
k=1

|xk − yk|

)
, (1.7)

and denote the bounded-Lipschitz norm of Kℓ by

BLℓ := max{Bℓ, Lℓ}, ℓ ∈ N. (1.8)

Additionally, assume that there exists η ≥ 0 such that

∞∑
ℓ=1

√
ℓ!

ηℓ
Bℓ <∞,

∞∑
ℓ=1

ℓLℓ <∞. (1.9)

(ii) (Higher regularity of interaction kernels):

Assume that Kℓ ∈ H
d(ℓ+1)

2
+ε for some ε > 0, and additionally

∞∑
ℓ=1

4ℓπ
dℓ
4√

Γ(dℓ2 )
∥Kℓ∥

H
d(ℓ+1)

2 +ε
<∞, (1.10)

where Γ represents the Gamma function Γ(a) :=
´∞
0 sa−1e−s ds for a > 0.

Assumption 2 (On the coupling weights).

(iii) (Absence of loops):

Assume that wℓ,Nij1···jℓ verify

wℓ,Nij1···jℓ = 0, if i ∈ {j1, . . . , jℓ}. (1.11)
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(iv) (Scaling of the coupling weights):
Assume that there exists W > 0 such that

sup
N∈N

max
1≤ℓ≤N−1

max
1≤i,j1,··· ,jℓ≤N

N ℓwℓ,Nij1···jℓ ≤W, (1.12)

Assumption 3 (On the symmetry of kernels and weights).

(v) (Symmetry of coupling weights):

Assume that wℓ,Nij1...,jℓ verify

wℓ,Nij1···jℓ = wℓ,Nσ(i)σ(j1)···σ(jℓ), ∀σ ∈ Sℓ+1, (1.13)

which in particular implies

wℓ,Nij1···jℓ = wℓ,Niσ(j1)···σ(jℓ), ∀σ ∈ Sℓ. (1.14)

(vi) (Symmetry of interaction kernels):
Assume that Kℓ verify

Kℓ(x, x1, · · · , xℓ) = Kℓ(x, xσ(1), . . . , xσ(ℓ)), ∀σ ∈ Sℓ. (1.15)

Assumption 4 (On the initial data).

(vii) (Scaling of the initial data):
Assume that there exists p ∈ [1, 2] such that XN

i,0 satisfies

sup
N∈N

max
1≤i≤N

E|XN
i,0|p <∞. (1.16)

Given this list of assumptions, the main contribution of the article can be stated in an informal
way as follows:

Theorem 1.1. Assume that the kernels Kℓ and the weights wℓ,Nij1...jℓ satisfy Assumptions 1, 2

and 3. For any (XN
1,0, . . . , X

N
N,0) with i.i.d. XN

i,0 (but N dependent law) satisfying Assumption

4, consider the unique solutions (XN
1 , . . . , X

N
N ) to (1.3). Then, there is a subsequence Nk → ∞

such that the mean-field limit of the multi-agent system (1.3) is characterized in a suitable

sense by a solution to the Vlasov-type equation (1.4)-(1.5) for some (µξt )ξ∈[0,1] ⊂ P(Rd) and
some w = (wℓ)ℓ∈N such that supℓ∈N ∥wℓ∥L∞ ≤W .

A more rigorous statement is given in Theorem 6.1. We refer to Remarks 5.3 and 5.3 for some
relaxation of the regularity assumption (1.10) under more particular shapes on the interaction
kernels Kℓ, and to Remark 6.2 for some comments about the need for the i.i.d. assumption
on the initial data. Finally, we also refer to Remark 6.5 for an alternative reformulation of the
Vlasov equation (1.4)-(1.5) in terms of a hierarchy of observables indexed by directed hypertrees
(which extends the hierachy indexed by trees and derived in [39] in the binary case).

The paper is organized as follows. Section 2 is devoted to recalling the definitions of various
types of hypergraphs, as well as of their various limit objects, which will allow us to situate
our work in the vast literature of graph and hypergraph limit theories. We also provide a
few examples inspired from the existing literature to illustrate the notions of hypergraphs and
hypergraphons, establishing rigorously the derivation from the former to the latter in some
specific cases. As remarked in [39], the classical notion of propagation of chaos cannot be
expected to hold for non-exchangeable particle systems, which are by definition not identically
distributed. Instead, we show the weaker notion of propagation of independence, generalizing
the approach of [39] to hypergraphs. Section 3 is devoted to showing that propagation of
independence holds for an auxiliary particle system which approximates the original particle
system (1.3) as N tends to infinity. In Section 4, we prove the well-posedness of the limit Vlasov
equation (1.4)-(1.5) by a fixed-point argument relying on the Lipschitz regularity of the force F
in (1.5) with respect to the measure µt, for an L

p-Bounded Lipschitz fibered distance. Section
5 is dedicated to proving the stability of the Vlasov equation with respect to both the initial
datum µ0 and the UR-hypergraphon (wℓ). In Section 6, we state our main result in full detail
and prove convergence of the solution to the particle system (1.3) toward the solution to the
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Vlasov equation (1.4)-(1.5). Lastly, in Section 7 we illustrate the convergence result of Theorem
1.1 via numerical simulations based on some examples of hypergraphs and multi-agent dynamics
presented in Section 2.3. We end with some conclusions and future perspectives in Section 8.

Notation:
Along the paper, we will alleviate the notation by introducing the following shorthand. For any
N ∈ N we denote J1, NK = {1, . . . , N}. Given ℓ ∈ N and 1 ≤ k ≤ ℓ, we define the multi-indices

jℓ = (j1, . . . , jℓ) ∈ J1, NKℓ, ĵℓ,k = (j1, . . . , jk−1, jk+1, . . . , jℓ) ∈ J1, NKℓ−1.

Additionally, given jℓ ∈ J1, NKℓ and σ ∈ Sℓ (a permutation of the finite set J1, ℓK), we define the
new multi-index σ(jℓ) by rearranging their components according to σ, that is,

σ(jℓ) = (jσ(1), . . . , jσ(ℓ)) ∈ J1, NKℓ.

Similarly, we shall denote the multi-variables

xℓ = (x1, . . . , xℓ) ∈ Rdℓ, ξℓ = (ξ1, . . . , ξℓ) ∈ [0, 1]ℓ, ξ̂ℓ,k = (ξ1, . . . , ξk−1, ξk+1, . . . , ξℓ) ∈ [0, 1]ℓ−1.

Let us introduce here the different spaces which will appear through the article. We denote:

• for p ∈ [1,∞], Lp+(X) the space of functions belonging to Lp(X) and taking nonnegative
values,

• M(X) the space of finite Borel measures on X and M+(X) the space of finite Borel
nonnegative measures on X,

• P(X) the space of probability measure on X,
• BL(X) the space of bounded-Lipschitz functions ϕ such that the bounded-Lipschitz
norm is finite i.e.

∥ϕ∥BL := max{∥ϕ∥L∞ , [ϕ]Lip} < +∞

where [ϕ]Lip stands for the Lipschitz constant of ϕ. BL(X) is equipped with the following
distance: for µ1, µ2 ∈ BL(X),

dBL(µ1, µ2) = sup
∥ϕ∥BL≤1

ˆ
X
ϕ(x)(dµ1(x)− dµ2(x)),

• BL1(X) the subspace of bounded-Lipschitz functions ϕ ∈ BL(X) such that ∥ϕ∥BL ≤ 1.

2. Preliminaries

2.1. Graphs and hypergraph limit theories. In this section, we briefly introduce some
useful notation and the necessary terminology to study hypergraphs, and their graph limit
theories as proposed in previous literature [30, 66, 77, 78].

2.1.1. Basics on hypergraphs. We first recall notation for (finite) hypergraphs.

Definition 2.1 (Hypergraph). A weighted hypergraph (or simply hypergraph) consists in a
triple H = (V,E,W ), where V is a finite set, E ⊂ 2V is a finite collection of subsets of V ,
and W : 2V −→ R+ satisfies W (e) > 0 if, and only if, e ∈ E. Elements in V are called nodes
(or vertices), and without loss of generality we shall assume that V = J1, NK for some N ∈ N,
elements in E are called hyperedges, and W is called the weight function. We also define:

(i) (Cardinality) The cardinality of a hyperedge edge e ∈ E is defined by #e.
(ii) (Rank) The rank of the hypergraph H is the largest cardinality of any hyperedge.
(iii) (Adjacency tensors) For each ℓ ∈ J1, N−1K, we define the (ℓ+1)-order adjacency tensor

(wℓ,Nij1···jℓ)1≤i,j1,...,jℓ≤N : wℓ,Nij1···jℓ :=W (i, j1, . . . , jℓ), i, j1, · · · , jℓ ∈ J1, NK.

We remark that hypergraphs are generalizations of graphs. More specifically, hypergrahs
whose hyperedges have cardinality 2 amount to usual graphs.
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Figure 1. Undirected hyperedge (left) and directed hyperedge (right).

Remark 2.2 (Directed hypergraphs). By definition the above hypergraphs have been considered
undirected. Specifically, hyperedges are regarded as non-ordered subsets of nodes and therefore

weights are assumed to be symmetric under permutations, that is, wℓ,Nij1···jℓ = wℓ,Nσ(i)σ(j1)···σ(jℓ) for

all hyperedge e = {i, j1, . . . , jℓ}, all σ ∈ Sℓ+1 and all ℓ ∈ J1, N − 1K.
However, as for graphs, directed weighted hypergraphs (or simply directed hypergraphs) could

have also been considered by replacing hyperedges by directed hyperedges. A directed hyperedge
(or hyperarch) is a pair e = {i;h} consisting of a tail i ∈ V and a head h ∈ 2V with i /∈ h. Since
the head is a non-ordered subset of nodes, the corresponding weights are assumed to be symmetric

under permutations on the nodes of the head, but not the tail, that is, wℓ,Nij1···jℓ = wℓ,Niσ(j1)···σ(jℓ) for

all directed hyperedge e = {i; j1, . . . , jℓ}, all σ ∈ Sℓ and all ℓ ∈ J1, N − 1K.
See Figure 1 for a graphical representation of the undirected edge e = {1, 2, 3, 4} and the

directed edge e = {1; 2, 3, 4} with same nodes 1, 2, 3, 4.

So defined, directed hypergraphs are well suited to formulate dynamical multi-agent system

under the form (3.1), since each term wℓ,Nij1···jℓKℓ(X
N
i , X

N
j1
, . . . , XN

jℓ
) represents the strength of

the force generated jointly by the agents XN
j1
, . . . , XN

jℓ
(acting as the head) and felt by the agent

XN
i (acting as the tail). However, more general hypergraphs could have been considered by

admiting that tails of the directed hyperedges may contain more than one element, or further
considering directed hyperedges simply as ordered lists of nodes. The more general the directed
hyperedges is, the less symmetries we assume on the weights.

Definition 2.3 (Types of hypergraphs).

(i) (Unweighted hypergraph) An unweighted hypergraph is a weighted hypergraph with weights
valued in {0, 1}. In such case, given i, j1, . . . , jℓ ∈ J1, NK, the set e = {i, j1, . . . , jℓ} is a

hyperedge if, and only if, wℓ,Nij1···jℓ = 1.

(ii) (Uniform hypergraphs) A k-uniform hypergraph is a weighted hypergraph whose hyper-

edges all have the same cardinality k. In other words, wℓ,Nij1···jℓ = 0 when ℓ ̸= k − 1.

(iii) (Simplicial complexes) A simplicial complex is an unweighted hypergraph whose hyper-
edges are closed under taking subsets, that is, if e′ ⊂ e ⊂ 2V and e ∈ E then e′ ∈ E.

2.1.2. Graph limit theories. Before introducing the recent theories on hypergraph limits, we
briefly review some of the main results in the theory of graph limits, and its use to derive
mean-field limits for multi-agent systems with binary interactions like (1.2).

Definition 2.4 (Graphons). Given W > 0, we define the set of graphons (graph functions) as

GW := {w ∈ L∞
+ ([0, 1]2) : ∥w∥L∞ ≤W, and w is symmetric}.

For any two graphons w, w̄ ∈ GW , we define the labeled cut distance

d□(w, w̄) := sup
S,T⊂[0,1]

∣∣∣∣¨
S×T

(w(ξ, ζ)− w̄(ξ, ζ)) dξ dζ

∣∣∣∣ ,
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as well as the (unlabeled) cut distance

δ□(w, w̄) = inf
Φ
d□(w, w̄

Φ),

where Φ ranges over all bijective measure-preserving maps Φ : [0, 1] −→ [0, 1], and w̄Φ ∈ GW
represents the rearranged graphon w̄Φ(ξ, ζ) = w̄(Φ(ξ),Φ(ζ)).

The space of graphons (GW , δ□) was first introduced in [54] as one of the first limit theories
for a sequence of graphs. Specifically, the authors proved that δ□ is a pseudodistance on the
space of graphons GW (as it is invariant under rearrangements of graphons) which, induced on
the quotient space GW / ∼ that identifies graphons identical modulo rearrangements, becomes
a compact metric space. Note that for any sequence of graphs (GN )N∈N with an increasing
number of nodes N we can associate a graphon wGN ∈ G1 via the piecewise function

wGN (ξ, ζ) = N
N∑

i,j=1

wNij 1INi ×INj
(ξ, ζ), ξ, ζ ∈ [0, 1],

where (wNij )1≤i,j≤N is the adjacency matrix of GN and INi := [ i−1
N , iN ), INj := [ j−1

N , jN ) for

all 1 ≤ i, j ≤ N . In view of the scaling wNij ≤ W
N natural for mean-field systems (see also

(1.12) for hypergraphs), we have intentionally rescaled the coupling weights wNij by N in the

above piecewise definition. By compactness of the space (GW , δ□) such sequence must have a
converging subsequence to a limiting graphon w ∈ GW with respect to the cut distance δ□.
Additionally, in [54] it was also proved that any graphon w ∈ GW can be approximated in the
cut distance by a sequence of finite graphs as above.

We remark that the labeled cut distance is strictly weaker than the L1 norm by triangle
inequality, that is,

d□(w, w̄) ≤ ∥w − w̄∥L1 ,

for all w, w̄ ∈ GW . Approximating any bounded Borel-measurable function by characteristic
functions of Borel sets, the labeled cut distance d□ can be reformulated as follows

d□(w, w̄) = sup
ϕ,ψ:[0,1]→[0,1]

∣∣∣∣∣
¨

[0,1]2
ϕ(ξ)ψ(ζ) (w(ξ, ζ)− w̄(ξ, ζ)) dξ dζ

∣∣∣∣∣ ,
and therefore we obtain the following useful equivalence with operator norms

d□(w, w̄) ≤ ∥Tw − T w̄∥∞→1 ≤ 4d□(w, w̄),

where above Tw : L∞([0, 1]) −→ L1([0, 1]) stands for the adjacency operator of w, which consists
in the bounded linear operator defined by

Tw[ψ](ξ) :=

ˆ 1

0
w(ξ, ζ)ψ(ζ) dζ, ξ ∈ [0, 1],

for each ψ ∈ L∞([0, 1]), and similarly we define T w̄.
An additional important feature of the cut distance is that the associated notion of conver-

gence is characterized by an object intimately related to graph theory, namely, the homomor-
phism density. Specifically, δ□(wn, w) → 0 if, and only if, τ(F,wn) → τ(F,w) for all finite
graphs F . Here, τ(F,w) is the graphon extension of the homomorphism density of a finite
graph F into a second finite graph G, which counts the proportion of graph homomorphisms
from V (F ) to V (G) among all maps from V (F ) to V (G), that is,

τ(F,w) :=

ˆ
[0,1]#V (F )

∏
(i,j)∈E(F )

w(ξi, ξj)
∏

i∈V (F )

dξi.

We refer to the monograph [53] for further details.
For general sequences of unweighted graphs (GN )N∈N the obtained limit w ∈ G1 is the trivial

graphon w ≡ 0 unless the sequence of graphs is dense, meaning that the number of edges is
quadratic on the number of verticies, i.e.,

#E(GN ) ≈ #V (GN )
2.
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The above suggests that the space (GW , δ□) is too small to capture the limit of sequences of
sparse graphs, and a more general theory is needed. This is the origin of other recent graph
limit theories operating over sequences of graphs with intermediate density/sparseness:

#V (GN ) ≲ #E(GN ) ≲ #V (GN )
2,

which we briefly review below.

⋄ (Graphings) In [12] a first graph limit theory appeared to study limits of very sparse
graph sequences (GN )N∈N having a number of edges linear on the number of vertices, that is,
#E(GN ) ≈ #V (GN ). More specifically, this limit theory is known as the local or Benjamini-
Schram convergence, it applies to sequences of graphs with bounded degree and limiting ob-
jects are probability measures over the set of rooted, connected (possibly infinite) graphs with
bounded degree. The theory was later extended in [18, 35], where a more general notion of
convergence of a sequence of graphs with bounded degree was proposed and was called the
local-global convergence in contrast to the local or Benjamini-Schram convergence. In the
local-global convergence, limiting objects are called graphings and are defined as (possibly infi-
nite) unweighted graphs G = (V (G), E(G)) with bounded degree, where nodes V (G) = X form
a Polish space, edges E(G) ⊂ X × X are Borel-measurable, and there is a probability measure
ν ∈ P(X ) such that ˆ

A
e(ξ,B) dν(ξ) =

ˆ
B
e(ξ, A) dν(ξ),

for all A,B ⊂ X Borel-measurable, where e(ξ, A) is the number of edges joining the node ξ ∈ X
to any node in A ⊂ X .

⋄ (Lp graphons) The theory of Lp graphons was proposed in [20, 19] as an extension of
the theory of L∞ graphons and proved to be useful for sequences of graphs (GN )N∈N with
intermediate density/sparsity. More particularly, Lp graphons are defined as

GpW := {w ∈ Lp+([0, 1]
2) : ∥w∥Lp ≤W, and w is symmetric},

for any p ∈ (1,∞]. The novelty of this setting is that, as proved in [20, Theorem 2.8], given a
sparse (unweighted) graph sequence (GN )N∈N which are uniformly Lp upper regular (see [20]
for a precise definition), one can define the renormalized Lp graphons wGN given by

wGN (ξ, ζ) =
1

D(GN )

N∑
i,j=1

wNij 1INi ×INj
(ξ, ζ), ξ, ζ ∈ [0, 1],

where (wNij )1≤i,j≤N is the adjacency matrix of GN , and D(GN ) =
#E(GN )
#V (GN )2

is the edge density

of the graph (which tends to zero for sparse graphs), and we have that wGN has a converging
subsequence to a limiting Lp graphon w ∈ GpW with respect to the cut distance δ□. The
normalization by the edge density ensures that limiting Lp graphons of sparse graph sequences
are not necessarily trivial, contrarily to what happened in the theory of dense graph limits.

⋄ (Graphops) Graphops where introduced in [5] as an attempt to derive a unifying theory of
graphons, graphings and Lp graphons. In this setting, objects are regarded as linear operators

G̃p,q,W :=

T : Lp(Ω) −→ Lq(Ω) :
T is linear, bounded, positivity-preserving,
self-adjoint, and verifies ∥T∥p→q ≤W,
and (Ω,Σ,P) is some probability space

 ,

where p ∈ [1,∞), q ∈ [1,∞) and ∥ · ∥p→q denotes the operator norm from Lp to Lq. The
underlying probability space is not fixed in purpose, as it varies in the limit. In [5, Theorem

2.10] the authors proved that a suitable quotient of G̃p,q,W endowed with the action convergence
distance dM (see [5] for further details) is compact.

We remark that graphons w ∈ GW can be realized as graphops through their adjacency
operator Tw : Lp([0, 1]) −→ Lq([0, 1]) as above, and also graphings can be realized as graphops.
Similarly, finite graphs GN can also be realized as graphops by defining the (discrete) adjacency
operator TGN : Lp(J1, NK) −→ Lq(J1, NK). Therefore, suitably renormalizing TGN so that their
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operator norms ∥ · ∥p→q stay uniformly bounded, we have the existence of a limiting graphop.
In [5] it was also observed that action convergence is equivalent to convergence in cut distance
when restricted to graphons, and local-global convergence when restricted to graphings.

Graphops are intimately related to s-graphons, which were poposed in [48] as an alternative
theory of sparse graphs where the limiting objects consist in symmetric probability measures
ν ∈ P([0, 1] × [0, 1]). More precisely, [5, Theorem 6.3] shows that any graphop T ∈ G̃p,q,W on
the probability space (Ω,Σ,P) admits a unique representation as a symmetric finite measure
νT ∈ M+(Ω× Ω) with marginals absolutely continuous with respect to P, namely,

νT (A×B) =

ˆ
Ω
T [1A](ξ)1B(ξ) dP(ξ), A,B ∈ Σ.

2.1.3. Mean-field limits on graphs. The above graph limit theories have proven to be extremely
useful in the last years to derive rigorous mean-field limits of multi-agent systems with binary
interactions such as (1.2) toward a suitable Vlasov-type equation. The fundamental obstruction
to apply standard methods of mean-field limits [21, 28, 33] and propagation of chaos [71] is the
fact that (1.2) is a non-exchangeable system. Specifically, exchanging two agents modifies the
overall dynamics of the groups as interactions are mediated by weights, which introduce a
distinguishable feature on agents. Depending on the degree of density or sparseness of the
sequence of the maps of connections, graphons, graphops and other extensions have been used.

The first attempts to derive the mean-field limit of interacting particle systems in the case
of dense graph sequences were developed in [23] (for Lipschitz graphons) and [43] (for non-
Lipschitz graphons), extending Neuzert’s method for exchangeable multi-agent systems [61].
The method of proof relies on the stability of the limiting Vlasov equation with respect to the
initial datum and the involved graphon in the following metric:

d1(µ, µ̄) =

ˆ 1

0
dBL(µ

ξ, µ̄ξ) dξ,

(see Definition 2.17 for an Lp extension). This estimate involves a continuous dependence on
the graphon in the L1-norm, which is a stronger requirement than the cut distance. Since the
compactness of (GW , δ□) could not be used, the authors prescribed an ad hoc discretization of
the graphon w by finite graphs GN to guarantee the stronger convergence ∥wGN − w∥L1 → 0.
In particular, general dense graph sequences are not supported by this argument.

This strategy was later extended in [31] to a sparse setting, using graphops. In this case,
the stability estimate of the limiting Vlasov equation was quantified in the analogous metric,
but required stronger convergence of graphops than action convergence, namely, the narrow

convergence νξTn → νξT of the disintegrations (see Theorem 2.15) for P-a.e. ξ ∈ Ω. Therefore,
an ad hoc discretization is needed to guarantee the stronger convergence, which the authors
achieved when the probability space (Ω,Σ,P) is a compact Abelian group with its Haar measure.

A further application of this strategy in a sparse setting was recently proposed in [46] to
deal with a new class of graph limits called digraph measures, consisting in bounded maps
ξ ∈ Ω 7−→ νξ ∈ M+(Ω). Whilst intimately related to graphops [5] and s-graphons [48], digraph
measures do not arise from graph limit theory, and in particular they do not form a compact
space. The authors obtained a similar estimate with respect to the distance

d∞(µ, µ̄) = sup
ξ∈Ω

dBL(µ
ξ, µ̄ξ),

which required the convergence of digraph measures supξ∈Ω dBL(ν
ξ
n, νξ) → 0. In [46] the authors

obtained suitable discretizations of digraph measures by finite graphs under the additional
assumption that Ω is a compact subset of an Euclidean space, and the digraph measure ξ ∈
Ω 7−→ νξ is continuous in the bounded-Lipschitz distance.

There are only a handful of results where the graph limit theories in Section 2.1.2 have been
used in full, that is, the natural compact topologies on the graph limit spaces have proved
enough in the mean-field limit and no preparation on the discretized weights is needed. To the
best of our knowledge some examples are [13, 39, 40].
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In [13], the authors derived the mean-field limit for a multi-agent system in a 1-dimensional
periodic domain over a sequence of dense random graphs. In particular, a stability estimate of
the limiting Vlasov equation was derived with respect to the pseudodistance

d̄1(µ, µ̄) = dBL

(ˆ 1

0
µξ dξ,

ˆ 1

0
µ̄ξ dξ

)
,

which operates over marginals, and therefore the structure variable ξ ∈ [0, 1] is disregarded
and averaged. Interestingly, the stability estimate depended continuously on the cut distance
between the involved graphons, and therefore the compactess of (GW , δ□) was enough, and
weights did not need to be well prepared.

In [39, 40], the authors defined the space of extended graphons as a new space of graph limits
consisting of measure-valued bounded maps

EGW :=
{
ν ∈ L∞

ξ ([0, 1],Mζ([0, 1])) ∩ L∞
ζ ([0, 1],Mξ([0, 1])) : ∥ν∥L∞

ξ Mζ
, ∥ν∥L∞

ζ Mξ
≤W

}
.

It was proved that GW ⊂ EGW ⊂ G̃p,p,W for any p ∈ [1,∞], and the space was endowed with a
notion of convergence characterized by the convergence τ(T, νn) → τ(T, ν) of the homomorphism
density for any tree T . The resulting space was proved compact, which gave access to a notion
of convergence of sparse graphs under the simple mild assumptions that

sup
N∈N

max
1≤i≤N

N∑
j=1

wNij + max
1≤j≤N

N∑
i=1

wNij ≤W.

Additionally, the authors obtained some stability estimates for the limiting Vlasov equation
depending continuously on the extended graphons with respect to such a topology, thus deriving
the mean-field limit for a large class of sparse graphs, and not necessarily well prepared.

We refer to [10, 11, 24, 27, 40, 50, 56, 64] for further recent results on continuum and mean-field
limits for non-exchangeable multi-agent systems on graphs, and also to [4] for a comprehensive
review of the recent literature.

2.1.4. Hypergraph limit theories. The literature on hypergraph limits is scarce and more recent.
To the best of our knowledge, the results available thus far are mostly concentrated in the papers
[30, 66, 77, 78], where three types of objects have been studied, namely, uniform hypergraphons,
hypergraphops and complexons. We briefly review the main outcomes in this subsection.

⋄ (Uniform hypergraphons) In [30] (later reformulated also in [77]), a limiting theory
of dense uniform hypergraphs (see Figure 2a) was proposed, leading the the so called uniform
hypergraphons. Specifically, the sequence of dense hypergraphs were assumed to have a fixed
and common cardinality k ∈ N on all hyperedges, and the limiting objects were defined by

k-HW :=
{
w ∈ L∞

+ ([0, 1]2
k−2) : ∥w∥L∞ ≤W, and w is symmetric

}
.

Elements in L∞
+ ([0, 1]2

k−2) have 2k−2 variables indexed by the non-empty and proper subsets of
J1, kK, and symmetric means that whenever a permutation σ ∈ Sk is set, and whenever we rear-
range the variables ξ1, ξ2, . . . , ξk, ξ{1,2}, ξ{1,3}, etc by ξσ(1), ξσ(2), . . . , ξσ(k), ξ{σ(1),σ(2)}, ξ{σ(1),σ(3)},
etc, the value of w does not change. The need for additional coordinates is related to the need
for suitable regularity partitions for hypergraphs [34].

Similarly to graphons (i.e., k = 2), this space was endowed with the topology induced by the
convergence of the homomorphism densities τ(F,wn) → τ(F,w), that is,

τ(F,w) =

ˆ ∏
e∈E(F )

w(ξe) dξ,

for any k-uniform hypergraph F . Above we denote ξ = (ξs : ∅ ̸= s ⊂ V (F ), #s ≤ k − 1) the
collection of variables indexed by all nonempty subsets of V (F ) with size smaller that k, and
ξe = (ξs : ∅ ≠ s ⊊ e) the subcollection of variables indexed by all nonempty and proper subsets
of e. As for the binary case, the resulting space is compact, see [77, Corollary 1.8].
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(a) Sequence of 3-uniform hypergraphs

(b) Sequence of non-uniform hypergraphs

Figure 2. Sequences of uniform (top) and non-uniform (bottom) hypergraphs

⋄ (Hypergraphops) As an extension of graphops [5], hypergraphops were proposed in [78]
as a limit theory for non-uniform (see Figure 2b) sparse hypergraphs with bounded rank r ∈ N:

r-H̃p,q,W :=

T : Lp(Ω)r−1 −→ Lq(Ω) :
T is multilinear, bounded, positivity-preserving,
symmetric, and verifies ∥T∥(Lp)r−1→Lq ≤W,
and (Ω,Σ,P) is some probability space

 ,

where p ∈ [1,∞), q ∈ [1,∞) and ∥ · ∥(Lp)r−1→Lq denotes the multilinear operator norm from

(Lp)r−1 to Lq. Again, a suitable quotient of k-H̃p,q,W endowed with the action convergence dis-
tance dM (see [78] for further details) is compact. As for graphs, finite hypergraphs (HN )N∈N
with bounded rank r can be realized as hypergraphops. In [78] several options were proposed
through the definition of the s-action for any s = 1, . . . , r − 1. Each way of embedding hyper-
graphs into graphops seems to provide a notion of convergence for hypergraphs that is better
adapted to dense, sparse, uniform and non-uniform settings.

⋄ (Complexons) In [66], a limit theory of dense simplicial complexes of unbounded rank
was derived. A simplicial complex is a hypergraph so that any subset of a hyperedge is again a
hyperedge. By definition, simplicial complexes are non-uniform and therefore their limit cannot
be tackled using k-uniform hypergraphons. Since the rank is also unbounded, hypergraphops
are not an option either. The alternative approach in [66] was to define the set of complexons
as the set of equivalence classes

C1 :=
{
w◦ = (w◦

ℓ )ℓ∈N :
w = (wℓ)ℓ∈N, wℓ ∈ L∞

+ ([0, 1]ℓ+1), ∥wℓ∥L∞ ≤ 1,
and wℓ is symmetric for all ℓ ∈ N

}
where w◦ is called the faceted version of w and is defined by

w◦
ℓ (ξ, ξ1, . . . , ξℓ) :=

ℓ∏
k=1

∏
{i0,...,ik}⊂J0,kK

wℓ(ξi0 , . . . , ξik), ξ, ξ1, . . . , ξℓ ∈ [0, 1],

where we denote ξ0 := ξ. The property w◦
ℓ ≥ w◦

ℓ+1 for all ℓ ∈ N is reminiscent of the closure
of simplicial complexes under restrictions. C1 was endowed with the topology induced by the
convergence of the homomorphism densities τ(F ◦, w◦

n) → τ(F ◦, w◦), that is,

τ(F ◦, w◦) =

ˆ
[0,1]#V (F )

∏
k∈N

∏
{i0,...,ik}∈E(F 0)

w◦(ξi0 , . . . , ξik)
∏

i∈V (F ◦)

dξ0 . . . dξ#V (F )−1,
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where for any simplicial complex F , the notation F ◦ stands for the hypergraph with same set
of nodes V (F ◦) = V (F ) but only the maximal hyperedges E(F ◦) ⊂ E(F ) which are not strict
subsets of larger hyperedges. So defined, C1 is compact as proven in [66, Theorem 13].

The proof is based on a characterization of the topology induced by the homomorphism
density, as the topology induced by a suitable higher-order extension of the cut distance of
graphons. This cut distance is actually well defined for general non-faceted w and, on this
more general space, it induces a compact topology [66, Lemma 33]. Since we do not need to
characterize the topology by homomorphism densities, instead of working on the quotient space
consisting of complexons, we shall rather work on the primitive space, which we define below.

2.2. Hypergraphons of unbounded rank. In this section we introduce the limit theory for
hypergraphs of unbounded rank which we shall use in this paper, and which is inspired by the
treatment in [66]. In particular, we introduce their underlying topology, a basic compactness
result reminiscent of the classical result for dense graph limits in [54], and some example of
convergence of sequences of hypergraphs toward its associated limiting object.

Definition 2.5 (Hypergraphons of unbounded rank). Given W > 0, we define the set of
hypergraphons of unbounded rank (or UR-hypergraphons) as follows

HW :=

{
w = (wℓ)ℓ∈N :

wℓ ∈ L∞
+ ([0, 1]ℓ+1), ∥wℓ∥L∞ ≤W,

and wℓ is symmetric for all ℓ ∈ N

}
.

For any two UR-hypergraphons w, w̄ ∈ HW , we define the ℓ-th order labeled cut distance

d□,ℓ(wℓ, w̄ℓ) := sup
S,S1,...,Sℓ⊂[0,1]

∣∣∣∣ˆ
S×S1×···×Sℓ

(wℓ − w̄ℓ) dξ dξ1 . . . dξℓ

∣∣∣∣ ,
for every ℓ ∈ N. To comprehend all possible orders, we define the labeled cut distance

d□(w, w̄; (αℓ)ℓ∈N) :=

∞∑
ℓ=1

αℓ d□,ℓ(wℓ, w̄ℓ),

where (αℓ)ℓ∈N is a strictly positive summable sequence, as well as the (unlabeled) cut distance

δ□(w, w̄; (αℓ)ℓ∈N) = inf
Φ
d□(w, w̄

Φ; (αℓ)ℓ∈N),

where Φ ranges over all bijective measure-preserving maps Φ : [0, 1] −→ [0, 1], and w̄Φ ∈ HW

represents the rearranged UR-hypergraphon w̄Φ
ℓ (ξ, ξ1, . . . , ξℓ) = w̄ℓ(Φ(ξ),Φ(ξ1), . . . ,Φ(ξℓ)).

As for the binary case, the labeled cut distance on UR-hypergraphs admits an alternative
representation as an operator norm. Specifically, the ℓ-th order labeled cut distance can be
reformulated in terms of test functions, namely,

d□,ℓ(wℓ, w̄ℓ) = sup
ϕ,ψ1,...,ψℓ:[0,1]→[0,1]

∣∣∣∣∣
¨

[0,1]ℓ+1

ϕ(ξ)ψ1(ξ1) · · ·ψℓ(ξℓ) (wℓ − w̄ℓ) dξ dξ1 . . . dξℓ

∣∣∣∣∣ ,
and therefore we obtain the following useful equivalence with multilinear operator norms

d□,ℓ(wℓ, w̄ℓ) ≤ ∥Twℓ − T w̄ℓ∥(L∞)ℓ→L1 ≤ 2ℓd□,ℓ(wℓ, w̄ℓ),

where above the multilinear operator Twℓ : L∞([0, 1])ℓ −→ L1([0, 1]) stands for the ℓ-th order
adjacency operator of wℓ, which consists in the bounded multilinear operator defined by

Twℓ [ψ1, . . . , ψℓ](ξ) :=

ˆ
[0,1]ℓ

wℓ(ξ, ξ1, . . . , ξℓ)ψ1(ξ1) · · · ψℓ(ξℓ) dξ1 . . . dξℓ, ξ ∈ [0, 1], (2.1)

for each ψ1, . . . , ψℓ ∈ L∞([0, 1]). The operator T w̄ℓ is defined similarly. All the above implies
the following equivalence between the labeled cut-distance and the multilinear opetator norms.

Proposition 2.6. For any strictly positive and summable sequence (αℓ)ℓ∈N we have

d□(w, w̄; (αℓ)ℓ∈N) ≤
∞∑
ℓ=1

αℓ ∥Twℓ − T w̄ℓ∥(L∞)ℓ→L1 ≤ d□(w, w̄; (2
ℓαℓ)ℓ∈N),
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for all w, w̄ ∈ HW , where the ℓ-adjacency operators Twℓ and T w̄ℓ are defined by (2.1).

As mentioned above, the interest in the space of UR-hypergraphons endowed with the cut
distance is the following compactness result from [66, Lemma 33].

Proposition 2.7 (Compactness of UR-hypergraphons). The unlabeled cut distance δ□ induces
topologically equivalent pseudometrics on the space of UR-hypergraphons HW which do not de-
pend on the summable sequence (αℓ)ℓ∈N. When induced on the quotient HW / ∼ that identifies
UR-hypergraphons identical modulo rearrangement, the space becomes a compact metric space.

Similarly to the case of sequences of dense graphs, one can characterize the convergence of
a sequence of hypergraphs via the unlabeled cut-distance. For any sequence of hypergraphs
(HN )N∈N with an increasing number of nodes N , we can associate a UR-hypergraphon w =

(wHN
ℓ )ℓ∈N via the family of piecewise-constant functions

wHN
ℓ (ξ, ξ1, . . . , ξℓ) = N ℓ

N∑
i,j1,...,jℓ=1

wℓ,Nij1···jℓ1INi ×INj1×···×INjℓ
(ξ, ξ1, · · · , ξℓ), (2.2)

for all (ξ, ξ1, · · · , ξℓ) ∈ [0, 1]ℓ+1, where (wℓ,Nij1···jℓ)1≤i,j1,...,jℓ≤N is the adjacency tensor of order ℓ+1

of HN , and I
N
i := [ i−1

N , iN ) for all 1 ≤ i ≤ N . In view of the scaling condition (1.12) which we
assume on our hypergraphs to derive the mean-field limit, we have intentionally rescaled the

coupling weights wℓ,Nij1,...,jℓ by N ℓ in the above piecewise definition. Note that it ensures that

wHN ∈ HW for the same W given in Assumption (1.12). This suggests the following notion of
convergence of hypergraphs (possibly with unbounded rank) toward a UR-hypergraphon.

Definition 2.8 (Convergence of hypergraphs). A sequence of hypergraphs (HN )N∈N is said to
converge to a UR-hypergraphon w ∈ HW when limN→∞ δ□(w,w

HN ; (αℓ)ℓ∈N) = 0 for some (and
then all) positive and summable sequence (αℓ)ℓ∈N.

The above Proposition 2.7 ensures that any such sequence of hypergraphs (HN )N∈N satisfying
the scaling condition (1.12), must converge toward some limiting UR-hypergraphon up to a
subsequence. In fact, as it happens in the binary case, the family of finite hypergraphs is dense
in UR-hypergraphons. In Propositions 2.9 and 2.10 below we provide two different constructive
methods to show that UR-hypergraphons can be suitably approximated in the cut distance by
sequences of finite hypergraphs: L1-approximations, and pointwise approximations.

Proposition 2.9 (L1-approximations of UR-hypergraphons). Let w = (wℓ)ℓ∈N ∈ HW be a UR-
hypergraphon. Let (HN )N∈N be the sequence of hypergraphs whose adjacency tensors (wℓ,N )ℓ∈N
are defined by L1-approximations of the UR-hypergraphon w, as follows:

wℓ,Nij1···jℓ =

 N

ˆ
INi ×INj1×···×INjℓ

wℓ(ξ, ξ1, · · · , ξℓ) dξ dξ1 · · · dξℓ, , if ℓ ∈ J1, N − 1K,

0, otherwise

for all (i, j1 · · · , jℓ) ∈ J1, NKℓ+1. Then, the sequence of hypergraphs (HN )N∈N converges as N
tends to infinity to the UR-hypergraphon w in the labeled cut-distance d□ (and hence also in the
unlabeled cut-distance δ□).

Proof. Let w = (wℓ)ℓ∈N ∈ HW and let (wHN
ℓ )ℓ∈N ∈ HW denote the piecewise-constant hyper-

graphon obtained from the hypergraph HN , as defined in (2.2). We aim to prove that for any
positive summable sequence (αℓ)ℓ∈N, limN→∞ d□(w,w

HN ; (αℓ)ℓ∈N) = 0. We actually show the
convergence of the sequence of hypergraphons in the stronger L1-norm, recalling that for any
ℓ ∈ N, the labeled and unlabeled cut-distances of order ℓ satisfy:

δ□,ℓ(wℓ, w
HN
ℓ ) ≤ d□,ℓ(wℓ, w

HN
ℓ ) ≤ ∥wℓ − wHN

ℓ ∥L1(Iℓ+1).

Let ε > 0. For each ℓ ∈ N, by density of Lipschitz functions in L1([0, 1]ℓ+1), consider
wεℓ ∈ Lip([0, 1]ℓ+1) so that

∥wℓ − wεℓ∥L1 ≤ ε.
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Let us denote by SNℓ : L1([0, 1]ℓ+1) −→ L1([0, 1]ℓ+1) the operator that to any wℓ associates

its stepfuction, i.e., the hypergraphon wHN
ℓ built piecewise by averaging on hypercubes of the

partition on N pieces. One can easily show that SNℓ is linear and bounded with ∥SℓN∥L1→L1 ≤ 1.
Then, by the triangle inequality we obtain

∥wℓ − SNℓ [wℓ]∥L1 ≤ ∥wℓ − wεℓ∥L1 + ∥wεℓ − SNℓ [wεℓ ]∥L1 + ∥SNℓ [wεℓ ]− SNℓ [wℓ]∥L1

≤ 2ε+ ∥wεℓ − SNℓ [wεℓ ]∥L1 .

We can then compute

∥wεℓ−SNℓ [wεℓ ]∥L1(Iℓ+1) =

ˆ
Iℓ+1

|wεℓ(ξ, ξ1, · · · , ξℓ)− SNℓ [wεℓ ](ξ, ξ1, · · · , ξℓ)| dξ dξ1 · · · dξℓ

=

N∑
i,j1,···jℓ=1

ˆ
INi ×INj1×···×INjℓ

|wεℓ(ξ, ξ1, · · · , ξℓ)− SNℓ [wεℓ ](ξ, ξ1, · · · , ξℓ)| dξ dξ1 · · · dξℓ

=
N∑

i,j1,···jℓ=1

ˆ
INi ×INj1×···×INjℓ

∣∣∣∣∣wεℓ(ξ, ξℓ)−
(
N ℓN

ˆ
INi ×INj1×···×INjℓ

wεℓ(ξ
′, ξ′ℓ)dξ

′d ξ′ℓ

)∣∣∣∣∣ dξ d ξℓ
≤

N∑
i,j1,···jℓ=1

ˆ
INi ×INj1×···×INjℓ

N ℓ+1

ˆ
INi ×INj1×···×INjℓ

∣∣wεℓ(ξ, ξℓ)− wεℓ(ξ
′, ξ′ℓ)

∣∣ dξ′ d ξ′ℓ dξ d ξℓ
≤N ℓ+1

N∑
i,j1,···jℓ=1

ˆ
(INi ×INj1×···×INjℓ )

2

√
ℓ+ 1

N
[wεℓ ]Lip dξ

′ d ξ′ℓ dξ d ξℓ

≤
√
ℓ+ 1

N
[wεℓ ]Lip ,

for each ℓ ∈ J1, N − 1K, where [wεℓ ]Lip denotes the Lipschitz semi-norm of wεℓ .

Keeping ε > 0 fixed and passing to the limit as N → ∞, it holds

lim sup
N→∞

∥wℓ − wHN
ℓ ∥L1 ≤ 2ε.

Since ε > 0 is arbitrary, we obtain

lim
N→∞

d□,ℓ(wℓ, w
HN
ℓ ) = lim

N→∞
∥wℓ − wHN

ℓ ∥L1 = 0.

Now, note that for any summable sequence (αℓ)ℓ∈N, it holds

αℓd□,ℓ(wℓ, w
HN
ℓ ) ≤ 2Wαℓ,

for all ℓ ∈ N and all N ∈ N, which gives a uniform-in-N domination by the summable sequence
(2Wαℓ)ℓ∈N. Additionally, we have proved that we have the pointwise convergence

lim
N→0

αℓd□,ℓ(wℓ, w
HN
ℓ ) = 0,

for all ℓ ∈ N. Then, by the dominated convergence theorem,

lim
N→∞

d□(w,w
HN ; (αℓ)ℓ∈N) = lim

N→∞

∞∑
ℓ=1

αℓd□,ℓ(wℓ, w
HN
ℓ ) =

∞∑
ℓ=1

αℓ lim
N→∞

d□,ℓ(wℓ, w
HN
ℓ ) = 0,

which concludes the proof. □

Proposition 2.10 (Pointwise approximation of UR-hypergraphons). Let w = (wℓ)ℓ∈N ∈ HW

be a UR-hypergraphon, and suppose that wℓ is continuous for all ℓ ∈ N. For all N ∈ N, let
(ξ̄Ni )i∈J1,NK be a sequence of points satisfying ξ̄Ni ∈ INi for all i ∈ J1, NK, where INi =

[
i−1
N , iN

)
.

Let (H̄N )N∈N be the sequence of hypergraphs whose adjacency tensors (w̄ℓ,N )ℓ∈N are defined by

evaluating the UR-hypergraphon w on the grid points (ξ̄Ni )ℓ+1
i∈J1,NK, as follows:

w̄ℓ,Nij1···jℓ =

{
1

N ℓ
wℓ(ξ̄

N
i , ξ̄

N
j1 , · · · , ξ̄

N
jℓ
), if ℓ ∈ J1, N − 1K,

0, otherwise
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for all (i, j1 · · · , jℓ) ∈ J1, NKℓ+1. Then, the sequence of hypergraphs (H̄N )N∈N converges as N
tends to infinity to the UR-hypergraphon w in the labeled cut-distance d□ (and hence also in the
unlabeled cut-distance δ□).

Proof. As in the proof of Proposition 2.9, we will prove the stronger convergence result in L1-
norm. Since wℓ is continuous and I

ℓ+1 is compact, then wℓ is uniformly continuous for all ℓ ∈ N.
Denoting by ϖℓ : R+ −→ R+ the modulus of continuity of wℓ, it holds

∥wℓ − wH̄N
ℓ ∥L1(Iℓ+1) =

N∑
i,j1,···jℓ=1

ˆ
INi ×···×INjℓ

|wℓ(ξ, ξℓ)−N ℓw̄ℓ,Ni jℓ
| dξd ξℓ

=
N∑

i,j1,···jℓ=1

ˆ
INi ×···×INjℓ

∣∣wℓ(ξ, ξℓ)− wℓ(ξ̄
N
i , ξ̄

N
j1 , · · · , ξ̄

N
jℓ
)
∣∣ dξd ξℓ

≤ϖℓ

(√
ℓ+ 1

N

)
,

for all ℓ ∈ N. By definition, ϖ is continuous and ϖ(0) = 0. Taking limits as N → ∞ implies

lim
N→∞

d□,ℓ(wℓ, w
HN
ℓ ) = lim

N→∞
∥wℓ − wHN

ℓ ∥L1 = 0,

for all ℓ ∈ N. The same argument as in the proof of Proposition 2.9, based on the dominated
convergence theorem, concludes the proof. □

In this paper we study the mean-field limit of the multi-agent system (1.3) over dense non-
uniform hypergraphs of unbounded rank (note that r = N). We rely on the above hypergraph
limit theory of UR-hypergraphons, which we show is compatible with the mean-field limit
without any ad hoc preparations of the weights. Of course our approach also works when
weights are prepared according to Propositions 2.9 or 2.10.

To the best of our knowledge, none of the above hypergraph limit theories has been exploited
previously in the community of mean-field limits. There is only one result available in the
literature where a mean-field limit of a multi-agent system with higher-order interactions has
been studied [47]. Inspired by the previous work [46] by the same authors on digraph measures,
a new class of limits of hypergraphs with bounded rank r ∈ N was proposed in terms of

directed hypergraph measures, which consist of bounded maps ξ ∈ Ω 7−→ νξℓ ∈ M+(Ω
ℓ) for

ℓ ∈ 1, . . . , r − 1. Directed hypegraph measures are related to hypergraphops [78], but do not
arise from hypergraph limit theory. As in the binary case, the authors’ strategy was to design
a method to well-prepare the hypergraphs as to approximate any given directed hypergraph
measure in a strong enough topology, compatible with their stability estimate.

2.3. Some examples of multi-agent systems over hypergraphs. To illustrate the defi-
nitions of hypergraph and hypergraphon (cf. Definitions 2.1, 2.3 and 2.5), we provide a few
examples inspired from the existing literature.

2.3.1. Examples of hypergraphs.

⋄ (Uniform hypergraphs): The simplest example of hypergraphs is the uniform hyper-
graph, in which all hyperedges have the same cardinality. When the cardinality is r = 2, all
hyperedges are in fact binary edges, so that the hypergraph is a graph.

⋄ (Simplicial complex from real-world networks): In [69], the authors propose a model
for oscillator dynamics on two different simplicial complexes, which are designed from real
datasets. The Macaque brain dataset consists of 242 interconnected regions of the brain, while
the UK power grid network consists of 120 nodes and 165 transmission lines. From the simple

graphs (w2,N
k1k2

)1≤k1,k2≤N given by these datasets, hyperedges are constructed using the following

simple criterion. For any ℓ ∈ {1, · · · , N − 1},

wℓ,Nij1···jℓ =

{
1 if w2,N

k1k2
= 1 for all k1, k2 ∈ {i, j1, . . . , jℓ},

0 otherwise.
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that is a hyperedge exists in the hypergraph when all possible pairs of nodes in the hyperedge
are edges of the graph. The resulting hypergraph is of rank r = N if and only if the network is
fully coupled. Otherwise, the hypergraph is of bounded rank r < N .

⋄ (Hypergraph for homogeneous groups): For θ ∈ (0, 1], the θ−fixed radius near neigh-
bor graph is defined by drawing an edge between each pair of agents whose labels (i, j) satisfy
|i − j| ≤ θN . It is an example of an undirected and unweighted graph. We can extend this
notion to hypergraphs by drawing a hyperedge between any group of agents whose diameter is
bounded by θN , defining

wℓ,Nij1···jℓ =


1

N ℓ
, if maxk1,k2∈{i,j1,...,jℓ} |k1 − k2| ≤ θN,

0, otherwise,
(2.3)

for each ℓ ∈ {1, · · · , N−1}. As mentioned above, the scaling by N ℓ in our weighted hypergraphs
is natural in view of the scaling condition (1.12) which ensures that the associated sequence
of UR-hypergraphons (wHN )N∈N defined by (2.2) all lie in HW (indeed with W = 1). A pixel
representation of this hypergraph for the hyperedges of dimension ℓ = 1 and ℓ = 2 is given in
Figure 3. If the labels represent agents’ identities, this hypergraph models the idea that agents
interact if and only if they have similar identities, i.e. if they form a homogeneous group. Notice
that if θ = 1, the hypergraph is fully connected, which represents all-to-all coupling.

Note that although we use the terminology “fixed radius near-neighbor” and “group diame-
ter”, the distance considered to build the hypergraph are in the space of labels. Confusion should
not be made with so-called “bounded confidence” models for exchangeable particle systems [37],
in which the interaction kernel has bounded support, which implies that agents interact if and
only if their distance in the state space is small enough.

Figure 3. Pixel representation of the matrix and 3-tensor respectively corre-
sponding to w1,N and w2,N given by (2.3), with θ = 0.3 and N = 20. As this is
an unweighted hypergraph, the presence of a hyperedge is represented in black.
Transparency was used to indicate depth in the 3-dimensional representation.

Remark 2.11. The sequence of hypergraphs for homogeneous groups defined in Equation (2.3)
can be shown to be obtained by evaluating the UR-hypergraphon w = (wℓ)ℓ∈N, defined by

wℓ(ξ0, · · · , ξℓ) =

1 if max
i,j∈{0,··· ,ℓ}

|ξi − ξj | ≤ θ,

0 otherwise
(2.4)

on the grid (ξ̄i)
ℓ+1
i∈J1,NK, where ξ̄i :=

i−1
N for all i ∈ J1, NK. Note that Proposition 2.10 cannot be

used to prove the convergence of the hypergraphs (2.3) toward the UR-hypergraphon (2.4) since,
so defined, wℓ is discontinuous for all ℓ ∈ N. Whilst the continuity assumption of Proposition
2.10 could seem restrictive, it is not always necessary and can be relaxed in many cases. Indeed,
convergence can still be proven in this case, as shown in Proposition A.1 (see Appendix A).
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⋄ (Weighted hypergraph for balanced groups): In this example, the hypergraph is also
of unbounded rank (r = N), and each hyperedge’s weight is assumed to be a decreasing function
of the distance between the average value of its nodes’ labels and the average value of all nodes’
labels (i.e. N+1

2 ). More precisely, given a decreasing function f : [0, 12 ] → R+, we define

wℓ,Nj0j1···jℓ =
1

N ℓ
f

(
1

N

∣∣∣∣∣ 1

ℓ+ 1

ℓ∑
k=0

jk −
N + 1

2

∣∣∣∣∣
)
, (2.5)

for all ℓ ∈ N. A pixel representation of such a hypergraph’s hyperedges of dimension ℓ = 1
and ℓ = 2 is given in Figure 4. This hypergraph models the idea that the more balanced a
group’s identities are (i.e. the average label of the group is close to N+1

2 ), the larger the group
interaction.

Figure 4. Pixel representation of the matrix and 3-tensor respectively corre-
sponding to w1,N and w2,N given by (2.5), with f : x 7→ 4(x− 1

2)
2 and N = 20.

For this weighted hypergraph, the value of each hyperedge’s weight is represented
on a color scale.

Remark 2.12. The sequence of hypergraphs for balanced groups defined in Equation (2.5) can
be shown to be obtained by evaluating the UR-hypergraphon w = (wℓ)ℓ∈N, defined by

wℓ(ξ0, · · · , ξℓ) = f

(∣∣∣∣∣ 1

ℓ+ 1

ℓ∑
i=0

ξi −
1

2

∣∣∣∣∣
)
, (2.6)

on the grid (ξ̄i)
ℓ+1
i∈J1,NK, where ξ̄i :=

i− 1
2

N for all i ∈ J1, NK. Then, whenever the function f is

continuous, convergence of convergence of the hypergraphs (2.5) toward the UR-hypergraphon
(2.6) is a direct application of Proposition 2.10.

2.3.2. Models of multi-agent dynamics on hypergraphs. Various examples of higher-order multi-
agent dynamics have recently been proposed in the literature. Applications range from opinion
dynamics to contagion propagation, synchronization of oscillators, animal communication, and
evolutionary game dynamics. We present some examples, and refer to [7, 8, 25, 38, 55, 67, 59,
60, 69, 73, 74, 75, 76] for further reading.

⋄ (Higher-order synchronization models): Several works studied generalizations of the
Kuramoto model of coupled oscillators with higher-order interactions [7, 55, 74, 75, 76]. De-
noting by θNi the phase and ΩNi the natural frequency of the i-th oscillator, its evolution is
prescribed by an equation of the form:

dθNi (t)

dt
= ΩNi +

N−1∑
ℓ=1

N∑
j1,··· ,jℓ=1

wℓ,Nij1···jℓ sin

(
ℓ∑

k=1

θNjk(t)− ℓ θNi (t)

)
.

We remark that the interaction kernels Kℓ(x, x1, . . . , xℓ) = sin(x1 + · · · + xℓ − ℓ x) satisfy the
symmetry assumption (1.15). Notice that the second-order term (for ℓ = 1) is exactly that
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encountered in the classical Kuramoto model [49]:

N∑
j=1

w1,N
ij sin

(
θNj (t)− θNi (t)

)
.

In [69], the authors studied another extension of the Kuramoto model for coupled oscillators
with higher order interactions arising from phase-reductions of limit-cycle oscillators. More
precisely, the evolution of the N oscillators is given by

dθNi (t)

dt
= ΩNi

N∑
j1=1

w1,N
ij1

sin(θNj1 (t)− θNi (t)) +

N∑
j1=1

N∑
j2=1

w2,N
ij1j2

sin(2θNj1 (t)− θNj2 (t)− θNi (t))

+
N∑
j1=1

N∑
j2=1

N∑
j3=1

w3,N
ij1j2j3

sin(θNj1 (t) + θNj2 (t)− θNj3 (t)− θNi (t)).

Note that the interaction kernels K2(x, x1, x2) = sin(2x1 − x2 − x) and K3(x, x1, x2, x3) =
sin(x1+x2−x3−x) do not satisfy the symmetry assumption (1.15). The underlying hypergraph
(wℓ,N )ℓ∈{1,...,3} is of rank 3, and is taken to be a simplicial complex constructed from real network
datasets, as explained above.

⋄ (Higher-order opinion dynamics models): In [60], a model for higher-order opinion
dynamics is proposed on a uniform hypergraph of rank 2. Denoting xNi (t) the opinion of the
i-th oscillator, its evolution is given by the following dynamics:

dxNi (t)

dt
=

N∑
j1=1

N∑
j2=1

w2,N
ij1j2

e
λ|xNj1 (t)−x

N
j2
(t)|
(
xNj1(t) + xNj2(t)

2
− xNi (t)

)
.

These dynamics model the idea that each agent i is attracted towards the average opinion of
the joint pair (j1, j2), with an intensity that depends on the distance between the opinions of
j1 and j2. More precisely, if λ < 0, then the pair of agents (j1, j2) will have a larger influence if
their opinions xj1 and xj2 are similar (i.e. |xj1 − xj2 | is small). On the opposite, if λ > 0, then
the pair of agents (j1, j2) will have a larger influence if their opinions xj1 and xj2 are dissimilar

(i.e. |xj1 −xj2 | is large). Notice that the interaction kernel K2(x, x1, x2) = eλ|x1−x2|
(
x1+x2

2 − x
)

does satisfy the symmetry assumption (1.15).
One could further generalize this model to include interactions of groups of all sizes, with the

following dynamics:

dxNi (t)

dt
=

N−1∑
ℓ=1

N∑
j1,··· ,jℓ=1

wℓ,Nij1···jℓe
λdiam(xNj1

(t),...,xNjℓ(t))

(
1

ℓ

ℓ∑
k=1

xNjk(t)− xNi (t)

)
,

where diam(xj1 , . . . , xjℓ) := maxk1,k2∈{j1,···jℓ} |xk1 −xk2 |. Here, each agent i is attracted towards
the average opinion of the group {j1, . . . , jℓ}, with an intensity that depends on the diameter
of the group.

2.4. Functional setting. In this section, we set the functional setting which we will use all
along the paper. As mentioned above, solutions to the Vlasov equation (1.4)-(1.5) will consist
of parametrized families (µξ)ξ∈[0,1] ⊂ P(Rd) of probability densities. We shall then study
existence and uniqueness of distributional solutions living in suitable measure-valued spaces.
This suggests the following definition.

Definition 2.13 (Borel family of probability measures). Consider any ν ∈ P([0, 1]), and let
(µξ)ξ∈[0,1] ⊂ P(Rd) be a parametrized family of probability measures defined for ν-a.e. ξ ∈ [0, 1].

We say that (µξ)ξ∈[0,1] is a Borel family if the map ξ ∈ [0, 1] 7−→ µξ(B) is Borel-measurable for

every Borel set B ⊂ Rd.

As explained in [65, Proposition 2.14], the following three conditions are equivalent for a
parametrized family (µξ)ξ∈[0,1] ⊂ P(Rd) or probability measures:
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(i) (Borel family I) (µξ)ξ∈[0,1] is a Borel family as in Definition 2.13.
(ii) (Borel family II) The following scalar function

ξ ∈ [0, 1] 7−→
ˆ
Rd

ϕ(x) dµξ(x).

is Borel-measurable for every bounded and Borel-measurable ϕ : Rd −→ R.
(iii) (Random probability measure) The following measured-valued map

ξ ∈ [0, 1] 7−→ µξ ∈ P(Rd),
is Borel-measurable when P(Rd) is endowed with its narrow topology.

Therefore, Borel families of probability measures can be alternatively regarded as various
different objects, among them: Markov transition kernels or also random probability measures
(i.e., random variables with values in P(Rd)), also called Young measures. As we shall see
below, an alternative reformulation, which will prove useful in our approach is the following.

Definition 2.14 (Fibered probability measures). Consider any ν ∈ P([0, 1]). We define the
space of fibered probability measures by

Pν(Rd × [0, 1]) := {µ ∈ P(Rd × [0, 1]) : πξ#µ = ν},
where πξ(x, ξ) = ξ is the projection on the second component, and therefore πξ#µ stands for the
marginal of µ in the second component.

So defined, fibered probability measures seem to be slightly different objects than the above
Borel families of probability measures. However, it turns out that Definition 2.14 is also an
alternative representation of the Borel families of probability measures in Definition 2.13 as
clarified by the following classical result.

Theorem 2.15 (Disintegration theorem). Consider any ν ∈ P([0, 1]) and µ ∈ Pν(Rd × [0, 1]),
then there exists a ν-a.e. uniquely defined Borel family (µξ)ξ∈[0,1] ⊂ P(Rd) so that¨

Rd×[0,1]
φ(x, ξ) dµ(x, ξ) =

ˆ 1

0

(ˆ
Rd

φ(x, ξ) dµξ(x)

)
dν(ξ),

for every bounded Borel-measurable map φ : Rd × [0, 1] −→ R. Conversely, given any Borel
family (µξ)ξ∈[0,1], then we can associate a unique fibered probability measure µ ∈ Pν(Rd× [0, 1])

so that the above formula holds true, and for simplicty, we shall write µ(x, ξ) = µξ(x)⊗ ν(ξ).

For this reason, without loss of generality we will often identify measures µ ∈ Pν(Rd × [0, 1])
with their associated Borel families of (ν-a.e. defined) measures (µξ)ξ∈[0,1] ⊂ P(Rd).

We would like to endow the space of fibered probability measures (or Borel families of proba-
bility measures, or Markov kernels, or random measures, or Young measures, etc) with a proper
metric structure. Note that the set of fibered probability measures Pν(Rd× [0, 1]) in Definition
2.14 is a closed subspace of P(Rd × [0, 1]) endowed with the narrow topology (which is metriz-
able). Hence, we may consider inducing such a (metrizable) topology on Pν(Rd× [0, 1]) so that
we have µn → µ narrowly if, and only if,¨

Rd×[0,1]
φ(x, ξ) dµn(x, ξ) →

¨
Rd×[0,1]

φ(x, ξ) dµ(x, ξ),

for all φ ∈ Cb(Rd × [0, 1]).

Remark 2.16 (Narrow topology is not appropriate). The use of narrow topology on Pν(Rd ×
[0, 1]) was discussed in [65], and it was observed that it coincides with the canonical stable
topology [6, 22, 36, 72] when the marginal in the second component is fixed, see [41, Corollary
2.9], [22, Theorem 2.1.1(D)] or [9, Lemma 2.1]. Unfortunately, a strong drawback of choosing the
narrow topology is that it is not stable under disintegration, meaning that if µn → µ narrowly,

then it is not necessary true that µξn → µξ narrowly for ν-a.e. ξ ∈ [0, 1], see [65, Remark 2.16].

Instead of using narrow topology, we shall consider a stronger topology as follows.
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Definition 2.17. Consider any ν ∈ P([0, 1]) and any p ∈ [1,∞], we define

Pp,ν(Rd × [0, 1]) :=

{
µ ∈ Pν(Rd × [0, 1]) :

ˆ 1

0
dpBL(µ

ξ, δ0) dν(ξ) <∞
}
.

dp,ν(µ1, µ2) :=

(ˆ 1

0
dpBL(µ

ξ
1, µ

ξ
2) dν(ξ)

)1/p

, µ1, µ2 ∈ Pp,ν(Rd × [0, 1]).

A similar fibered distance was proposed in [65] by the second author with the bounded-
Lipschitz distance dBL on P(Rd) replaced by the Wasserstein distance W2 on P2(Rd), and with
p = 2. The resulting space was proven to have a weakly Riemannian structure reminiscent of
the classical one on the Wasserstein space (P2(Rd),W2) proposed by Otto [63], and an abstract
theory of gradient flows for functionals on such a space was derived. In this paper, we stick to
the choice of bounded-Lipschitz distance and general p ∈ [1,∞]. We emphasize though that
the ultimate goal of considering general p ∈ [1,∞] is not simple generality of the well-posedness
results of (1.4)-(1.5), but actually, the common choice p = ∞ in previous literature (see e.g.,
[46, 47]) will prove insuficient to obtain suitable stability estimates in Section 5 involving a
continuous dependence on the underlying UR-hypergraphon with respect to the cut distance.
For this reason the case p = ∞ is discarded in the statement of our main result Theorem 1.1.

We note that the space in Definition 2.17 encode a metric-valued Lp space, and as such, it is
a new metric space. Specifically, we have the following result.

Proposition 2.18. For any ν ∈ P([0, 1]) and p ∈ [1,∞] the space (Pp,ν(Rd × [0, 1]), dp,ν) in
Definition 2.17 is a complete metric space. In addition, it is separable when p ∈ [1,∞).

We omit its proof since it can be found in [65, Appendix A] for p = 2, and its adaptation to
general p is straightforward.

Proposition 2.19. For any ν ∈ P([0, 1]) and p ∈ [0, 1] we have

dBL(πx#µ1, πx#µ2) ≤ dBL(µ1, µ2) ≤ dp,ν(µ1, µ2),

for every µ1, µ2 ∈ Pp,ν(Rd× [0, 1]). Thereby, the dp,ν topology is finer than the narrow topology.

Proof. ⋄ Step 1: dBL(πx#µ1, πx#µ2) ≤ dBL(µ1, µ2).

Consider any bounded and Lipschitz test function ϕ : Rd −→ R with ∥ϕ∥BL ≤ 1. By the
definition of the pushfoward and bounded-Lipschitz distance on P(Rd × [0, 1]), we haveˆ

Rd

ϕ(x) (dπx#µ1(x)− dπx#µ2(x)) =

ˆ
Rd×[0,1]

ϕ(x)(dµ1(x, ξ)− dµ2(x, ξ))

≤ ∥ϕ∥BL dBL(µ1, µ2) ≤ dBL(µ1, µ2),

and then we end by taking supremum over all ϕ

⋄ Step 2: dBL(µ1, µ2) ≤ dp,ν(µ1, µ2).

Consider any bounded and Lipschitz test function φ : Rd × [0, 1] −→ R with ∥φ∥BL ≤ 1. Using
the disintegration Theorem 2.15 and Hölder’s inequality with 1

p +
1
q = 1 and we have

¨
Rd×[0,1]

φd(µ1 − µ2) =

ˆ 1

0

ˆ
Rd

φ(x, ξ) (dµξ1(x)− dµξ2(x)) dν(ξ)

≤
ˆ 1

0
∥φ(·, ξ)∥BL dBL(µ

ξ
1, µ

ξ
2) dν(ξ) ≤

(ˆ 1

0
∥φ(·, ξ)∥qBL dν(ξ)

)1/q

dp,ν(µ1, µ2).

Since ∥φ(·, ξ)∥BL ≤ ∥φ∥BL ≤ 1, we conclude by arbitrariness of the test function φ. □

In most cases, we will not have an isolated measure µ ∈ Pν(Rd × [0, 1]), but a full curve
t ∈ [0, T ] 7→ µt ∈ Pν(Rd × [0, 1]). Given t ∈ [0, T ] we could disintegrate each µt using the above

Theorem 2.15, but potentially we may have that the resulting Borel family (µξt )ξ∈[0,1] is not well
defined on a ν-negligible set depending on t. Additionally, this construction does not ensure

whether for a.e. ξ ∈ [0, 1] the family (µξt )t∈[0,T ] parametrized by time must be a Borel family,
and that will be important later. The following strategy can be used to circumvent both issues.
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Theorem 2.20 (Time-dependent disintegrations). Consider any ν ∈ P([0, 1]) and any Borel
family of probability measures (µt)t∈[0,T ] ⊂ Pν(Rd × [0, 1]). Then, there exists a Borel family

(µξt )(t,ξ)∈[0,T ]×[0,1] ⊂ P(Rd) defined for dt⊗ ν-a.e. (t, ξ) ∈ [0, T ]× [0, 1] such that

ˆ T

0

(¨
Rd×[0,1]

ψ(t, x, ξ) dµt(x, ξ)

)
dt =

¨
[0,T ]×[0,1]

(ˆ
Rd

ψ(t, x, ξ) dµξt (x)

)
dt dν(ξ), (2.7)

for every bounded Borel-measurable map ψ : [0, T ]× Rd × [0, 1] −→ R. In particular,

(i) For a.e. t ∈ [0, T ], the slice (µξt )ξ∈[0,1] is a Borel family defined for ν-a.e. ξ ∈ [0, 1], and
it corresponds to a possible disintegration of µt in the sense of Theorem 2.15.

(ii) For ν-a.e. ξ ∈ [0, 1], the slice (µξt )t∈[0,T ] is a Borel family defined for a.e. t ∈ [0, T ].

Proof. Since (µt)t∈[0,T ] ⊂ Pν(Rd × [0, 1]) is a Borel family, Theorem 2.15 shows allows finding a

measure µ̂ := 1
T dt⌊[0,T ] ⊗ µt(x, ξ) ∈ P([0, T ]× Rd × [0, 1]) such that

˚
[0,T ]×Rd×[0,1]

ψ(t, x, ξ) dµ̂(t, x, ξ) =

ˆ T

0

(¨
Rd×[0,1]

ψ(t, x, ξ) dµt(x, ξ)

)
dt

T
, (2.8)

for every bounded Borel-measurable map ψ : [0, T ]× Rd × [0, 1] −→ R. Consider the marginal

ν̂ := π(t,ξ)# µ̂ =
1

T
dt⌊[0,T ] ⊗ ν(ξ) ∈ P([0, T ]× [0, 1]),

and disintegrate µ̂ with respect (t, ξ) as in Theorem 2.15 to obtain a Borel ν̂-a.e. defined family

(µξt )(t,ξ)∈[0,T ]×[0,1], which is Borel-measurable jointly in the two indices (t, ξ), and such that
˚

[0,T ]×Rd×[0,1]
ψ(t, x, ξ) dµ̂(t, x, ξ) =

¨
[0,T ]×[0,1]

(ˆ
Rd

ψ(t, x, ξ) dµξt (x)

)
dt

T
⊗ ν(ξ), (2.9)

for every bounded Borel-measurable map ψ : [0, T ]×Rd× [0, 1] −→ R. Equating (2.8) and (2.9)
and multyplying by T implies (2.7).

Let us consider the dt⊗ ν-negligible set N ⊂ [0, T ]× [0, 1] consisting of the points where the

Borel family (µξt )(t,ξ)∈[0,T ]×[0,1] is not defined and note that N can be reformulated as

N = {(t, ξ) ∈ [0, T ]× [0, 1] : t ∈ N 1
ξ } = {(t, ξ) ∈ [0, T ]× [0, 1] : ξ ∈ N 2

t },

where N 1
ξ and N 2

t are the slice in the first and second components:

N 1
ξ := {t ∈ [0, T ] : (t, ξ) ∈ N}, ξ ∈ [0, 1],

N 2
t := {ξ ∈ [0, 1] : (t, ξ) ∈ N}, t ∈ [0, T ].

By Fubini theorem, we have that

0 = ν̂(N ) =

ˆ
[0,T ]×[0,1]

1N (t, ξ) dν̂(t, ξ) =
1

T

ˆ T

0
ν(N 2

t ) dt =
1

T

ˆ 1

0
|N 1

ξ | dν(ξ).

Hence, ν(N 2
t ) = 0 for a.e. t ∈ [0, T ] and |N 1

ξ | = 0 for ν-a.e. ξ ∈ [0, 1]. Thefore, for a.e.

t ∈ [0, T ] the slice (µξt )ξ∈[0,1] is defined except on a t-dependent ν-negligible set, and for ν-a.e.

ξ ∈ [0, 1] the slice (µξt )t∈[0,T ] is defined except on a ξ-dependent Lebesgue negligible set. The
Borel-measurability of each slice follows from the joint measurability in (t, ξ).

Finally, note that (µξt )ξ∈[0,1] must be a disintegration of µt for a.e. t ∈ [0, T ]. To this end,

we consider any dense sequence {φn}n∈N ⊂ Cc(Rd × [0, 1]), which exists by separability, and
consider (2.7) for the special test function ψ(t, x, ξ) := η(t)φn(x, ξ) with η ∈ C([0, T ]). Then,

ˆ T

0
η(t)

(¨
Rd×[0,1]

φn(x, ξ) dµt(x, ξ)

)
dt =

ˆ T

0
η(t)

(ˆ 1

0

ˆ
Rd

φn(x, ξ) dµ
ξ
t (x) dν(ξ)

)
dt,
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for all ψ ∈ C([0, T ]) and all n ∈ N. Since η is arbitrary and the time integrand is integrable,
then the fundamental calculus of variations shows that for every n ∈ N there exists a Lebesgue-
negligible set Nn ⊂ [0, T ] so thatˆ

Rd×[0,1]
φn(x, ξ) dµt(x, ξ) =

ˆ 1

0

ˆ
Rd

φn(x, ξ) dµ
ξ
t (x) dν(ξ),

for all t ∈ [0, T ] \ Nn and all n ∈ N . Defining the new set N∞ := ∪n∈N, which is Lebesgue-
negligible again and by density of the sequence {ϕn}n∈N, we have that for every t ∈ [0, T ] \N∞
the Borel family (µξt )ξ∈[0,1] is a disintegration of µt in the sense of Theorem 2.15. □

In the above result we may be tempted to further claim that if µ ∈ C([0, T ],Pν(Rd × [0, 1])),
then we also have µξ ∈ C([0, T ],P(Rd)) for ν-a.e. fiber ξ ∈ [0, 1]. However, this is not true in
general as noted in Remark 2.16 because the narrow topology is not disintegrable. Moving from
Pν(Rd × [0, 1]) to any Pp,ν(Rd × [0, 1]) does not solve the issue neither.

Remark 2.21 (On the reference measure ν). In this paper we shall restrict to ν = dξ⌊[0,1], that
is, the Lebegue measure on [0, 1]. The fundamental reason is that, as for the classical theory of
dense graph limits [54], the limit theory of dense simplicial complex in [66] focuses on hypergraphs
with weighted hyperedges, but non-weighted vertices. Alternatively, we may think that vertices
are weighted uniformly, which explains the uniform density ν = dξ⌊[0,1]. However, we could have
added heterogeneous weights (mass) to vertices, thus changing the underlying measure ν. This
was treated in previous literature [46, 47] for Vlasov-type equations like (1.4)-(1.5) restricted to
binary, or higher-order interactions of bounded order.

In order to make the language of Borel families of probability measures (µξt )ξ∈[0,1] ⊂ P(Rd) in
Definition 2.13 compatible with the language of fibered probability measures µt ∈ Pν(Rd×[0, 1])
in Definition 2.14 at the level of the Vlasov equation, we reformulate (1.4)-(1.5) as follows:

∂tµt + divx(Fw[µt]µt) = 0, t ≥ 0, x ∈ Rd, ξ ∈ [0, 1],

µt=0 = µ0,
(2.10)

with µ0 ∈ Pν(Rd × [0, 1]), where the mean-field force reads

Fw[µt](x, ξ) :=

∞∑
ℓ=1

ˆ
[0,1]ℓ

wℓ(ξ, ξ1, . . . , ξℓ)

×
(ˆ

Rdℓ

Kℓ(x, x1, . . . , xℓ) dµ
ξ1
t (x1) · · · dµξℓt (xℓ)

)
dξ1, . . . dξℓ,

(2.11)

We note that measure-valued solutions to (2.10)-(2.11) are indeed expected to take values in
the subspace of probability measures Pν(Rd× [0, 1]). Specifically, since the divergence in (2.10)1
only affects the variable x, then the dynamics takes place in a fiberwise, that is, measure-valued
solutions should satisfy πξ#µt = πξ#µ0 = ν for all t ≥ 0. This further justifies our choice

of proposing a theory of measure-valued solutions living in fibered spaces Pν(Rd × [0, 1]) and
Pp,ν(Rd× [0, 1]). We refer to Section 4.2 for precise definitions of distributional solutions on the
above space, where in particular the equivalence of (1.4)-(1.5) and (2.10)-(2.11) is shown.

3. Propagation of independence over hypergraphs

Inspired by the approach developed in [39], we propose the following auxiliary multi-agent
system, which we expect to approximate the original multi-agent system (1.3) as N → ∞ (under
suitable scaling assumptions on the coupling weights):

dX̄N
i

dt
=

N−1∑
ℓ=1

N∑
j1,...,jℓ=1

wℓ,Nij1···jℓ E
N
i Kℓ(X̄

N
i , X̄

N
j1 , . . . , X̄

N
jℓ
),

X̄N
i (0) = XN

i,0.

(3.1)
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Above, ENi = E[ · |F̄N
i ] denotes the expectation conditioned to the natural filtration F̄N

i of X̄N
i ,

that is, the family of time-dependent sub-σ-algebras defined by

F̄N
i (t) = σ({X̄N

i (s) : 0 ≤ s ≤ t}). (3.2)

An analogue of the intermediary system (3.1) was first introduced in [39] for multi-agent systems
with binary interactions (that is ℓ = 1). It consists in the non-exchangeable version of the
McKean process proposed in [71] to derive propagation of chaos of exchangeable multi-agent
systems with bounded-Lipschitz binary interaction kernels via the trajectorial approach. Here,
we extend it to operate over non-exchangeable multi-agent systems evolving under higher-order
interactions characterized by hypergraphs of unbounded order.

First, we study the well-posedness of the auxiliary multi-agent system (3.1).

Lemma 3.1 (Well-posedness of the intermediary system). Assume that the kernels Kℓ verify
the assumptions (1.6) and (1.7). Then, for any (XN

1,0, . . . , X
N
N,0) such that E|XN

i,0| <∞, and for

any (wℓ,Nij1...jℓ)1≤i,j1,...,jℓ≤N with ℓ = 1, · · · , N−1, there is a global-in-time solution (X̄N
1 , . . . , X̄

N
N )

to (3.1) which is unique pathwise and in law.

We omit the proof since it is an elementary extension of the classical case with binary inter-
actions and constant weights, see [42, Proposition 1.3.] and [71, Theorem 1.1].

We now find a quantitative error estimate about the deviation between the original system
(1.3) and the approximate one (3.1). Contrarily to other approaches (e.g., [39, 71]), where only
ℓ∞-based estimates were obtained, we find general ℓp-based error estimates.

Lemma 3.2 (Error estimate). Assume that the kernels Kℓ satisfy the assumptions (1.6) and

(1.7), and the weights (wℓ,Nij1...jℓ)1≤i,j1,...,jℓ≤N with ℓ = 1, · · · , N − 1 satisfy (1.11). Suppose addi-

tionally that the symmetry hypotheses (1.14) and (1.15) are satisfied. For any (XN
1,0, . . . , X

N
N,0)

with independent XN
i,0 such that E|XN

i,0|p <∞ for some p ∈ [1, 2], consider the unique solutions

(XN
1 , . . . , X

N
N ) to (1.3) and (X̄N

1 , . . . , X̄
N
N ) to (3.1) as in Lemma 3.1. Then,(

1

N

N∑
i=1

E|XN
i (t)− X̄N

i (t)|p
)1/p

≤ e(C̃
N
∞+CN

p )tεNp , (3.3)

for all t ≥ 0, where the constants C̃N∞, CNp and εNp are defined by

C̃N∞ := max
1≤i≤N

N−1∑
ℓ=1

Lℓ
∑

jℓ∈J1,NKℓ
wℓ,Ni jℓ

, (3.4)

CNp :=

 N∑
i=1

N−1∑
ℓ=1

Lℓ

ℓ∑
k=1

∑
ĵℓ,k∈J1,NKℓ−1

 N∑
jk=1

(wℓ,Ni jℓ
)q

1/q

p

1/p

, (3.5)

εNp := 2

 1

N

N∑
i=1

N−1∑
ℓ=1

√
ℓ!Bℓ

 N∑
j1,...,jℓ=1

(wℓ,Nij1···jℓ)
2

1/2

p

1/p

, (3.6)

and q ∈ [2,∞] is related to p ∈ [1, 2] by 1
p +

1
q = 1.

Proof. We give a proof only for 1 < p <∞, but the same argument goes through for p = 1 and
p = ∞ by suitably replacing sums by max over i when needed, and then we omit the details.
We start by comparing the original XN

i and auxiliary multi-agent system X̄N
i . Specifically, we

integrate (1.3) and (3.1) over the time interval [0, t], take their difference, and add and subtract
the intermediary term Kℓ(X̄

N
i , X̄

N
j1
, . . . , X̄N

jℓ
) to obtain

|XN
i (t)− X̄N

i (t)|p

= |XN
i (t)− X̄N

i (t)|p−1 |XN
i (t)− X̄N

i (t)|
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≤
ˆ t

0
|XN

i (t)− X̄N
i (t)|p−1ANi (s) ds+

ˆ t

0
|XN

i (t)− X̄N
i (t)|p−1BN

i (s) ds,

where each term takes the form

ANi :=
N−1∑
ℓ=1

∑
jℓ∈J1,NKℓ

wℓ,Ni jℓ

∣∣Kℓ(X
N
i , X

N
j1 , · · · , X

N
jℓ
)−Kℓ(X̄

N
i , X̄

N
j1 , · · · , X̄

N
jℓ
)
∣∣ , (3.7)

BN
i :=

N−1∑
ℓ=1

∣∣∣∣∣∣
∑

jℓ∈J1,NKℓ
wℓ,Ni jℓ

(Kℓ(X̄
N
i , X̄

N
j1 , · · · , X̄

N
jℓ
)− ENi Kℓ(X̄

N
i , X̄

N
j1 , · · · , X̄

N
jℓ
))

∣∣∣∣∣∣ . (3.8)

Taking expectations, and using Hölder’s inequality for the expectation with the exponents p
and q on the products in the right hand side, we obtain

E|XN
i (t)− X̄N

i (t)|p ≤ (E|XN
i (t)− X̄N

i (t)|p)
1
q

ˆ t

0

(
(E|ANi (s)|p)1/p + (E|BN

i (s)|p)1/p
)
ds,

which readily implies

(E|XN
i (t)− X̄N

i (t)|p)1/p ≤
ˆ t

0

(
(E|ANi (s)|p)1/p + (E|BN

i (s)|p)1/p
)
ds.

Taking ℓp norms with respect to the index i, and by Minkowski’s inequality, it holds(
1

N

N∑
i=1

E|XN
i (t)− X̄N

i (t)|p
)1/p

≤
ˆ t

0

(
1

N

N∑
i=1

E|ANi (s)|p
)1/p

ds+

ˆ t

0

(
1

N

N∑
i=1

E|BN
i (s)|p

)1/p

ds.

(3.9)

In the sequel we focus on finding suitable bounds for E|ANi |p and E|BN
i |p.

⋄ Step 1: Control of (E|ANi |p)1/p.
On the one hand, using the Lipschitz-continuity assumption (1.7) of Kℓ on (3.7), taking global
expectations, and using Hölder’s inequality and Minkowski’s inequality, we obtain

(E|ANi |p)1/p ≤ ANi,1 +ANi,2,

where

ANi,1 :=

N−1∑
ℓ=1

Lℓ
∑

jℓ∈J1,NKℓ
wℓ,Ni jℓ

(E|XN
i − X̄N

i |p)1/p

and

ANi,2 :=
N−1∑
ℓ=1

Lℓ
∑

jℓ∈J1,NKℓ
wℓ,Ni jℓ

ℓ∑
k=1

(E|XN
jk

− X̄N
jk
|p)1/p.

Taking ℓp norms with respect to i in the first term ANi,1 yields(
1

N

N∑
i=1

(ANi,1)
p

)1/p

≤ C̃N∞

(
1

N

N∑
i=1

E|XN
i − X̄N

i |p
)1/p

,

where the constant C̃N∞ is explicitly given by (3.4). The second term ANi,2 can be controlled by

ANi,2 =

N−1∑
ℓ=1

Lℓ

ℓ∑
k=1

∑
ĵℓ,k∈J1,NKℓ−1

N∑
jk=1

wℓ,Ni jℓ
(E|XN

jk
− X̄N

jk
|p)1/p
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≤
N−1∑
ℓ=1

Lℓ

ℓ∑
k=1

∑
ĵℓ,k∈J1,NKℓ−1

 N∑
jk=1

(wℓ,Ni jℓ
)q

1/q N∑
j=1

E|XN
j − X̄N

j |p
1/p

,

where in the last inequality we have used Hölder’s inequality with parameters p and q on the
sum in the index j. Then, taking ℓp norms with respect to i yields(

1

N

N∑
i=1

(ANi,2)
p

)1/p

≤ CNp

(
1

N

N∑
i=1

E|XN
i − X̄N

i |p
)1/p

,

where the constant CNp is also explicitly given in (3.5). Therefore, we readily obtain a bound
on the first term of the right hand side of (3.9):(

1

N

N∑
i=1

E|ANi |p
)1/p

≤ (C̃N∞ + CNp )

(
1

N

N∑
i=1

E|XN
i − X̄N

i |p
)1/p

. (3.10)

⋄ Step 2: Control of (E|BN
i |p)1/p.

In this second step, we extend the approach proposed in [71] for exchangeable multi-agent system
and also in [39] for non-exchangeable multi-agent systems with binary interactions to our non-
exchangeable multi-agent system governed by higher-order interactions. Additionally, we extend
the ℓ∞-based estimates on the decay of correlations by more general ℓp-based estimates.

Taking expectations in (3.8), using Minkowski’s inequality for the sum over ℓ, and using
Jensen’s inequality on each of the terms of the sum over ℓ to control p-th order moments by the
second order moments (which can be done because 1 ≤ p ≤ 2), we can write

(E|BN
i |p)1/p ≤

N−1∑
ℓ=1

Rℓ,Ni ,

where the errors Rℓ,Ni are defined by

Rℓ,Ni :=

E

∣∣∣∣∣∣
∑

jℓ∈J1,NKℓ
wℓ,Ni jℓ

(Kℓ(X̄
N
i , X̄

N
j1 , · · · , X̄

N
jℓ
)− ENi Kℓ(X̄

N
i , X̄

N
j1 , · · · , X̄

N
jℓ
))

∣∣∣∣∣∣
21/2

.

Squaring Rℓ,Ni and expanding the involved square we obtain

(Rℓ,Ni )2 =
∑

jℓ∈J1,NKℓ

∑
j′ℓ∈J1,NKℓ

wℓ,Ni jℓ
wℓ,N
i j′ℓ

E
[
(Kℓ(X̄

N
i , X̄

N
j1 , · · · , X̄

N
jℓ
)− ENi Kℓ(X̄

N
i , X̄

N
j1 , · · · , X̄

N
jℓ
))

· (Kℓ(X̄
N
i , X̄

N
j′1
, · · · , X̄N

j′ℓ
)− ENi Kℓ(X̄

N
i , X̄

N
j′1
, · · · , X̄N

j′ℓ
))
]
. (3.11)

We now distinguish two different cases for the multi-indices jℓ and j′ℓ depending on whether
{j1, . . . , jℓ} can be rearranged into {j′1, . . . , j′ℓ} by a permutation or not.

▷ Case 1: There exists a permutation σ ∈ Sℓ such that σ(j′ℓ) = jℓ.

In this case, by the symmetry assumptions (1.14) on (wℓ,Nij1···jℓ)1≤i,j1,...,jℓ≤N , it holds

wℓ,N
i j′ℓ

= wℓ,N
iσ(j′ℓ)

= wℓ,Ni jℓ
.

Similarly, by the symmetry (1.15) for the kernels Kℓ we also have

Kℓ(X̄
N
i , X̄

N
j′1
, · · · , X̄N

j′ℓ
)− ENi Kℓ(X̄

N
i , X̄

N
j′1
, · · · , X̄N

j′ℓ
)

= Kℓ(X̄
N
i , X̄

N
σ(j′1)

, · · · , X̄N
σ(j′ℓ)

)− ENi Kℓ(X̄
N
i , X̄

N
σ(j′1)

, · · · , X̄N
σ(j′ℓ)

)

= Kℓ(X̄
N
i , X̄

N
j1 , · · · , X̄

N
jℓ
)− ENi Kℓ(X̄

N
i , X̄

N
j1 , · · · , X̄

N
jℓ
).

Therefore, the corresponding diagonal term in the sum (3.8) simplifies into

(wℓ,Ni jℓ
)2E

∣∣Kℓ(X̄
N
i , X̄

N
j1 , · · · , X̄

N
jℓ
)− ENi Kℓ(X̄

N
i , X̄

N
j1 , · · · , X̄

N
jℓ
)
∣∣2 ≤ 4B2

ℓ (w
ℓ,N
i jℓ

)2.
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▷ Case 2: There is no permutation σ ∈ Sℓ such that σ(j′ℓ) = jℓ.
In this case, there exists 0 ≤ m < ℓ and two permutations σ, σ′ ∈ Sℓ so that σ(jℓ) and σ′(j′ℓ)
share exactly their first m components, and the last ℓ−m components are disjoint, that is,

∀i ∈ J1,mK, jσ(i) = j′σ′(i) and {jσ(m+1), . . . , jσ(ℓ)} ∩ {j′σ′(m+1), . . . , j
′
σ′(ℓ)} = ∅. (3.12)

Similarly to ENi , we define the new expectation ENi,m = E[ · |F̄N
i,m] which is conditioned to the

natural filtration F̄N
i,m of the vector (X̄N

i , X̄
N
jσ(1)

, . . . , X̄N
jσ(m)

), that is

F̄N
i,m(t) = σ({X̄N

i (s), X̄N
jσ(1)

(s), . . . , X̄N
jσ(m)

(s) : 0 ≤ s ≤ t}).

The law of iterated expectations E = EENi,m along with the above symmetry assumption

(1.15) on the kernels imply

E
[
(Kℓ(X̄

N
i , X̄

N
j1 , · · · , X̄

N
jℓ
)− ENi Kℓ(X̄

N
i , X̄

N
j1 , · · · , X̄

N
jℓ
))

· (Kℓ(X̄
N
i , X̄

N
j′1
, · · · , X̄N

j′ℓ
)− ENi Kℓ(X̄

N
i , X̄

N
j′1
, · · · , X̄N

j′ℓ
))
]

= E
{
ENi,m

[
(Kℓ(X̄

N
i , X̄

N
jσ(1)

, . . . , X̄N
jσ(m)

, X̄N
jσ(m+1)

, . . . , X̄N
jσ(ℓ)

)

− ENi Kℓ(X̄
N
i , X̄

N
jσ(1)

, . . . , X̄N
jσ(m)

, X̄N
jσ(m+1)

, . . . , X̄N
jσ(ℓ)

))

· (Kℓ(X̄
N
i , X̄

N
jσ(1)

, . . . , X̄N
jσ(m)

, X̄N
j′
σ′(m+1)

, . . . , X̄N
j′
σ′(ℓ)

)

− ENi Kℓ(X̄
N
i , X̄

N
jσ(1)

, . . . , X̄N
jσ(m)

, X̄N
j′
σ′(m+1)

, . . . , X̄N
j′
σ′(ℓ)

))
]}
.

By (3.12) and the independence of all X̄N
i we observe that the random vectors (X̄N

jσ(m+1)
, . . . , X̄N

jσ(ℓ)
)

and (X̄N
j′
σ′(m+1)

, . . . , X̄N
j′
σ′(ℓ)

) are independent and therefore, the random variable

Kℓ(X̄
N
i , X̄

N
jσ(1)

, . . . , X̄N
jσ(m)

, X̄N
jσ(m+1)

, . . . , X̄N
jσ(ℓ)

)

− ENi Kℓ(X̄
N
i , X̄

N
jσ(1)

, . . . , X̄N
jσ(m)

, X̄N
jσ(m+1)

, . . . , X̄N
jσ(ℓ)

)

and the random variable

Kℓ(X̄
N
i , X̄

N
jσ(1)

, . . . , X̄N
jσ(m)

, X̄N
j′
σ′(m+1)

, . . . , X̄N
j′
σ′(ℓ)

)

− ENi Kℓ(X̄
N
i , X̄

N
jσ(1)

, . . . , X̄N
jσ(m)

, X̄N
j′
σ′(m+1)

, . . . , X̄N
j′
σ′(ℓ)

)

are independent conditioned to the sub-σ-algebra F̄N
i,m. Hence, the conditional expectation ENi,m

of their product is the product of their conditional expectations. The conditional expectations
of those random variables separately take the value

ENi,m
[
Kℓ(X̄

N
i , X̄

N
jσ(1)

, . . . , X̄N
jσ(m)

, X̄N
jσ(m+1)

, . . . , X̄N
jσ(ℓ)

)

− ENi Kℓ(X̄
N
i , X̄

N
jσ(1)

, . . . , X̄N
jσ(m)

, X̄N
jσ(m+1)

, . . . , X̄N
jσ(ℓ)

)
]

ENi,mKℓ(X̄
N
i , X̄

N
jσ(1)

, . . . , X̄N
jσ(m)

, X̄N
jσ(m+1)

, . . . , X̄N
jσ(ℓ)

)

− ENi,mENi Kℓ(X̄
N
i , X̄

N
jσ(1)

, . . . , X̄N
jσ(m)

, X̄N
jσ(m+1)

, . . . , X̄N
jσ(ℓ)

) = 0,

where in the last step we have used that since F̄N
i,m ⊂ F̄N

i then the law of iterated expactations

yields ENi,mENi = ENi,m, and similarly for the second random variable.

Altogether this shows that if jℓ and j′ℓ lie in Case 2, the corresponding non-diagonal term
in (3.11) necessarily vanishes. Therefore only multi-indices as in Case 1 leading to diagonal
terms can persist. Since given jℓ there are ℓ! posibilities for j

′
ℓ as in Case 1 (that is, all possible
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permutations of the ℓ components), then we obtain the following bound for Rℓ,Ni in (3.11):

Rℓ,Ni ≤ 2Bℓ
√
ℓ!

 N∑
j1,...,jℓ=1

(wℓ,Nij1···jℓ)
2

1/2

.

Hence, we have the following control of (E|BN
i |p)1/p in (3.8):

(E|BN
i |p)1/p ≤ 2

N−1∑
ℓ=1

Bℓ
√
ℓ!

 N∑
j1,...,jℓ=1

(wℓ,Nij1···jℓ)
2

1/2

.

Taking ℓp norms with respect to i yields(
1

N

N∑
i=1

E|BN
i |p
)1/p

≤ εNp , (3.13)

where εNp is given in (3.6). Plugging (3.10) and (3.13) into (3.9) implies the integral inequality:(
1

N

N∑
i=1

E|XN
i (t)− X̄N

i (t)|p
)1/p

≤ (C̃N∞ + CNp )

ˆ t

0

(
1

N

N∑
i=1

E|XN
i (s)− X̄N

i (s)|p
)1/p

ds+ εNp t,

for all t ≥ 0. Thereby, since XN
i (0) = X̄N

i (0), Grönwall’s lemma ends the proof. □

As we observe in the proof, the only motivation to restrict to p ∈ [1, 2] appears in Step 2,

in order to interpolate (E|BN
i |p)1/p by the power p = 2. By doing so, the above is controlled by

a squared expectation error term as in the seminal work [71], where an analogous cancellation
property is obtained thanks to the independence of the random variables X̄N

i . We note that the
power p = 2 is not the only special case where this can be done, as notice in [42, Proposition
2.3], where the authors also studied the case p = 4. However, for the sake of simplicity we
preferred to restrict to the case p = 2.

Remark 3.3 (Propagation of independence). We observe that Lemma 3.2 applies to general
hypergraphs satisfying the symmetry condition (1.14). In order for the right hand side of (3.3)
to decay as N → ∞ one needs to assume additionally the following (general) conditions

sup
N∈N

(C̃N∞ + CNp ) <∞, lim
N→∞

εNp = 0.

A particular case where the above two conditions are met is when the scaling assumption
(1.12) of weights and the scaling assuption (1.9) of kernels hold true. Specifically, note that the
former guarantees the following control of the above constants

C̃N∞ ≤W
∞∑
ℓ=1

Lℓ, CNp ≤W
∞∑
ℓ=1

ℓLℓ, εNp ≤ 2W
∞∑
ℓ=1

√
ℓ!Bℓ
N ℓ/2

.

For binary interactions, the first term ℓ = 1 in the above control of εNp coincides with

the classical decay N−1/2 in propagation of chaos [71]. Interestingly, when multi-body inter-
actions are considered, we find that the higher ℓ, the quicker the decay of the corresponding
term N−ℓ/2. When all possible multi-body interactions are superposed, the scaling assumption
(1.9)2 guarangees the uniform-in-N bound of C̃N∞ and CNp , and also (1.9)1 implies

εNp ≤

(
2W

∞∑
ℓ=1

√
ℓ!Bℓ
ηℓ

)
η1/2

N1/2
,

for all N ≥ η. Hence, we are able to recover the global decay N−1/2, which coincides with the
weakest of the decays among all possible multi-body interactions.
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In the following, we show that for independent initial data XN
i,0, and therefore independent

X̄N
i solving (3.1), their laws fulfill a closed system of coupled PDEs.

Lemma 3.4 (Coupled PDE system). Assume that the kernels Kℓ verify the assumptions (1.6)

and (1.7), and the weights (wℓ,Nij1...jℓ)1≤i,j1,...,jℓ≤N with ℓ = 1, · · · , N − 1 satisfy (1.11). For any

(XN
1,0, . . . , X

N
N,0) with independent XN

i,0 such that E|XN
i,0| < ∞, consider the unique solution

(X̄N
1 , . . . , X̄

N
N ) to (3.1) as in Lemma 3.1, and define their associated laws

λ̄N,it := Law(X̄N
i (t)), t ≥ 0, 1 ≤ i ≤ N. (3.14)

Then, (λ̄N,i)1≤i≤N is a solution in distributional sense to the following coupled PDE system

∂tλ̄
N,i
t + divx(F

N
i [λ̄N,1t , · · · , λ̄N,Nt ] λ̄N,it ) = 0, t ≥ 0, x ∈ Rd, 1 ≤ i ≤ N,

λ̄N,i0 = Law(XN
i,0),

(3.15)

where the forces FNi take the form

FNi [λ̄N,1t , · · · , λ̄N,Nt ](x) =

N−1∑
ℓ=1

N∑
j1,··· ,jℓ=1

wℓ,Nij1···jℓ

ˆ
Rdℓ

Kℓ(x, x1, . . . , xℓ) dλ̄
N,1
t (x1) · · · dλ̄N,Nt (xN ).

(3.16)

Proof. Assume that i /∈ {j1, . . . , jℓ} and note that all X̄N
j (t) can be regarded as measurable

functions X̄N
j (t) : ΩN −→ Rd on a common probability space (ΩN ,ΣN ,PN ). Then, by the

independency of X̄N
i and (X̄N

j1
, . . . , X̄N

jℓ
) and the definition of conditional expectation we have

ENi Kℓ(X̄
N
i , X̄

N
j1 , . . . , X̄

N
jℓ
)(ω)

= E
[
Kℓ(X̄

N
i , X̄

N
j1 , . . . , X̄

N
jℓ
)|X̄N

i = X̄N
i (ω)

]
= EKℓ(X̄

N
i (ω), X̄N

j1 , . . . , X̄
N
jℓ
)

=

ˆ
Rdℓ

Kℓ(X̄
N
i (ω), x1, . . . , xℓ) dλ̄

N,j1
t (x1) · · · dλ̄N,jℓt (xℓ),

for all ω ∈ ΩN , where in the last step we have used the law of the unconcious statistician.
Hence, we obtain the following identity

wℓ,Nij1···jℓE
N
i Kℓ(X̄

N
i , X̄

N
j1 , . . . , X̄

N
jℓ
) = wℓ,Nij1···jℓ

ˆ
Rd

Kℓ(X̄
N
i , x1, . . . , xℓ) dλ̄

N,j1
t (x1) · · · dλ̄N,jℓt (xℓ),

for all i, j1, . . . , jℓ ∈ J1, NK because we are assuming that wℓ,Nij1···jℓ = 0 for all i ∈ {j1, . . . , jℓ} by

(1.11), and therefore the multi-agent system (3.1) can be reformulated in an alternative way
closer to the formulation of the McKean process introduced in [71] for exchangeable systems:

dX̄N
i

dt
=

N−1∑
ℓ=1

N∑
j1,...,jℓ=1

wℓ,Nij1···jℓ

ˆ
Rd

Kℓ(X̄
N
i , x1, . . . , xℓ) dλ̄

N,j1
t (x1) · · · dλ̄N,jℓt (xℓ),

X̄N
i (0) = XN

i,0.

(3.17)

Then, by a standard argument based on the law of unconcious statistician again we obtain that

the laws λ̄N,it must satisfy the coupled PDE system (3.15). □

Note that according to Remark 3.3, Lemma 3.2 allows approximating the multi-agent system
(1.3), consisting of non-exchangeable and dependent random variables XN

i (t), by an interme-
diary multi-agent system (3.1), consisting of still non-exchangeable but independent random
variables X̄N

i (t) under general enough conditions on the hypergraphs and the interaction ker-
nels (e.g., (1.9) and (1.12)). The independency can also be observed in Lemma 3.4, where the

individual laws λ̄N,it of each approximate agent X̄N
i (t) solve a closed system of N coupled PDEs

(3.15)-(3.16). Whilst the degree of complexity has been reduced enormously once correlations
have been destroyed, this coupled system of PDEs is still highly complex since the number
of PDEs grows with N and one would like to have a simpler representation, in particular as
N → ∞. This was already explored in [39] by using a graphon reformulation of (3.15)-(3.16).
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Definition 3.5 (Graphon reformulation). For every N ∈ N, and t ∈ R+ we define

µNt ∈ Pν(Rd × [0, 1]), µ̄Nt ∈ Pν(Rd × [0, 1]), wN = (wNℓ )ℓ∈N,

where each element is given as follows

µN,ξt :=
N∑
i=1

1INi
(ξ)δXN

i (t), ξ ∈ [0, 1], (3.18)

µ̄N,ξt :=
N∑
i=1

1INi
(ξ) λ̄N,it , ξ ∈ [0, 1], (3.19)

wNℓ (ξ, ξ1, . . . , ξℓ) :=
N∑

i,j1,...,jℓ=1

1INi ×INj1×···×INjℓ
(ξ, ξ1, . . . , ξℓ)N

ℓwℓ,Nij1···jℓ , ξ, ξ1, · · · , ξℓ ∈ [0, 1],

(3.20)

for all 1 ≤ ℓ ≤ N − 1, wNℓ ≡ 0 for all ℓ ≥ N , and INi = [ i−1
N , iN ) for all 1 ≤ i ≤ N .

On the one hand, note that actually µ̄Nt ∈ Pp,ν(Rd × [0, 1]), and also µNt ∈ Pp,ν(Rd × [0, 1])

for each realization. On the other hand, wNℓ ∈ L∞([0, 1]ℓ+1) for each ℓ ∈ N and their L∞ norms
are uniformly bounded with respect to ℓ ∈ N. If we further assume the additional symmetry
hypothesis (1.13) on the weights, then wN = (wNℓ )ℓ∈N are UR-hypergraphons (cf. Definition
2.5) for all N ∈ N, though L∞ norms may blow up as N → ∞ unless we additionally assume
the fundamental hypothesis (1.12) on the coupling weights, which will become important in
Section 6. Then, we have the enough measurability properties to check whether the graphon
reformulation (µ̄N , wN ) associated to the intermediary multi-agent system (3.1) is a genuine
distributional solution to the Vlasov-equation (2.10)-(2.11).

Lemma 3.6. Assume that the kernels Kℓ verify the assumptions (1.6) and (1.7), and the

weights (wℓ,Nij1...jℓ)1≤i,j1,...,jℓ≤N with ℓ = 1, · · · , N−1 satisfy (1.11). For any (XN
1,0, . . . , X

N
N,0) with

independent XN
i,0 such that E|XN

i,0| < ∞, consider the unique solution (X̄N
1 , . . . , X̄

N
N ) to (3.1)

as in Lemma 3.1, their associated laws (λ̄N,i)1≤i≤N as in (3.14) and the graphon reformulation
(µ̄N , wN ) in Definition 3.5. Then, µ̄N is a distributional solution to the Vlasov equation (2.10)-

(2.11) with hypergraphon wN = (wNℓ )ℓ∈N and initial datum µ̄N,ξt=0 =
∑N

i=1 1INi
(ξ) Law(Xi,0).

Proof. Consider any ξ ∈ [0, 1], fix i ∈ J1, NK such that ξ ∈ INi and note that µ̄N,ξt = λ̄N,it . Then,
anything we have to prove is that the following identity holds true

FNi [λ̄N,1t , . . . , λ̄N,Nt ] = FwN [µ̄Nt ](·, ξ).

Indeed, bearing in mind the scaling N ℓ present in the definition of piecewise constant functions
wNℓ and the fact that |Ij1 × · · · × Ijℓ | = N ℓ, then one recognises that the discrete sums below
correspond to integrals of piecewise constant functions and therefore

FNi [λ̄N,1t , · · · , λ̄N,Nt ](x)

=
N−1∑
ℓ=1

N∑
j1,··· ,jℓ=1

wℓ,Nij1···jℓ

ˆ
Rdℓ

Kℓ(x, x1, . . . , xℓ) dλ̄
N,1
t (x1) · · · dλ̄N,Nt (xN )

=
N−1∑
ℓ=1

1

N ℓ

N∑
j1,··· ,jℓ=1

N ℓwℓ,Nij1···jℓ

ˆ
Rdℓ

Kℓ(x, x1, . . . , xℓ) dλ̄
N,1
t (x1) · · · dλ̄N,Nt (xN )

=

N−1∑
ℓ=1

ˆ
[0,1]ℓ

wNℓ (ξ, ξ1, · · · , ξℓ)
ˆ
Rdℓ

Kℓ(x, x1, . . . , xℓ) dµ̄
N,ξ1
t (x1) · · · dµ̄N,ξNt (xN ) dξ1 · · · dξℓ,

and then one finds FwN [µ̄Nt ](x, ξ) in the right hand side, thus ending the proof. □
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Whilst the precise notion of distributional solution to (2.10)-(2.11) and also (3.15)-(3.16) is
standard, in Section 4 we formulate the definition more precisely and we show that the Vlasov
equation admits unique solutions living in appropriate measure-valued spaces.

4. Well-posedness of the Vlasov equation over UR-hypergraphons

In this section we study the well-posedness of the Vlasov equation (2.10)-(2.11). We will
not restrict to a well-posedness theory of (2.10)-(2.11) over UR-hypergraphons w = (wℓ)ℓ∈N
only, but actually the theory will be aplicable to a broader class of w where L∞ norms are not
available, thus opening the way to a sparse setting.

4.1. Properties of the force and well-posedness of characteristics. In this section we
introduce some properties of the force Fw[µt], which will prove useful to solve the kinetic equation
(2.10)-(2.11) by the method of characteristics based on the Cauchy-Lipschitz theorem.

Proposition 4.1 (Properties of the force I). Assume that the kernels Kℓ verify the assumptions
(1.6) and (1.7), consider any Borel family of probability measures (µt)t∈R+ ⊂ Pν(Rd × [0, 1]),
any w = (wℓ)ℓ∈N, and suppose that

BF :=

∥∥∥∥∥
∞∑
ℓ=1

Bℓ∥wℓ∥L1
ξℓ

∥∥∥∥∥
L∞
ξ

<∞, LF :=

∥∥∥∥∥
∞∑
ℓ=1

Lℓ∥wℓ∥L1
ξℓ

∥∥∥∥∥
L∞
ξ

<∞. (4.1)

Then, the force Fw[µt](x, ξ) in (1.5) is well-defined for all t ∈ R+, all x ∈ Rd and a.e. ξ ∈ [0, 1],
and it verifies the following three properties:

(i) (Boundedness)
|Fw[µt](x, ξ)| ≤ BF ,

for all t ∈ R+, all x ∈ Rd and a.e. ξ ∈ [0, 1].
(ii) (Lipschitz-continuity with respect to x)

|Fw[µt](x, ξ)− Fw[µt](x̃, ξ)| ≤ LF |x− x̃|,
for all t ∈ R+, all x, x̃ ∈ Rd and a.e. ξ ∈ [0, 1].

(iii) (Measurability)
(t, ξ) ∈ R+ × [0, 1] 7→ Fw[µt](x, ξ),

is Borel-measurable for all x ∈ Rd.

Proof. We first show boundedness condition, which in particular ensures that Fw[µt](x, ξ) is
well defined for all t ∈ R+, all x ∈ Rd and a.e. ξ ∈ [0, 1]. Specifically, take any t ∈ R+, any
x ∈ Rd and any for which all wℓ(ξ, ·) are defined (therefore a.e. ξ ∈ [0, 1]), and note that

|Fw[µt](x, ξ)| ≤
∞∑
ℓ=1

ˆ
[0,1]ℓ

|wℓ(ξ, ξ1, . . . , ξℓ)|
(ˆ

Rd

Bℓ dµ
ξ1
t (x1) · · · dµξℓt (xℓ)

)
dξ1 . . . dξℓ

=
∞∑
ℓ=1

Bℓ

ˆ
[0,1]ℓ

|wℓ(ξ, ξ1, . . . , ξℓ)| dξ1 . . . , dξℓ ≤ BF ,

where in the first step we have used the boundedness assumption (1.6) of the interaction kernels

Kℓ, in the second step we have use that µξ1t , . . . , µ
ξℓ
t ∈ P(Rd), and in the last step we have taken

essential supremum with respect to ξ ∈ [0, 1].
Similarly, for all t ≥ 0, x, x̃ ∈ Rd and a.e. ξ ∈ [0, 1], the Lipschitz-continuity (1.7) implies

|Fw[µt](x, ξ)− Fw[µt](x̃, ξ)|

≤
∞∑
ℓ=1

ˆ
[0,1]ℓ

|wℓ(ξ, ξ1, . . . , ξℓ)|
(ˆ

Rdℓ

Lℓ|x− x̃| dµξ1t (x1) · · · dµξℓt (xℓ)
)
dξ1 . . . dξℓ

=

( ∞∑
ℓ=1

Lℓ

ˆ
[0,1]ℓ

|wℓ(ξ, ξ1, . . . , ξℓ)| dξ1 . . . dξℓ

)
|x− x̃| ≤ LF |x− x̃|,
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Finally, since (µt)t∈R+ is a Borel family, then so is (µ⊗
ℓ

t )t∈R+ (we give a prove below). Note
that each wℓ(ξ, ·)Kℓ(x, ·) is a bounded and Borel measurable. Then each

(t, ξ) ∈ R+ × [0, 1] 7→
ˆ
(Rd×[0,1])ℓ

wℓ(ξ, ·)Kℓ(x, ·) dµ⊗
ℓ

t ,

is Borel-measurable for all ℓ ∈ N, then so is (t, ξ) ∈ R+ × [0, 1] 7→ Fw[µt](x, ξ) since it can be
obtained as the sum over ℓ of all the above Borel-measurable functions.

To conclude, we recall why the tensor product of Borel families of probability measures is
a new Borel family, which has been used above, and it is based on a standard application of
Dynskin’s π − λ theorem [16, Theorem 3.2]. For any ℓ ∈ N, we define the sets

Pℓ := {B1 ⊗ · · · ⊗Bℓ ⊂ (Rd)ℓ : Bℓ ⊂ Rd is a Borel set},

Λℓ := {Eℓ ⊂ (Rd)ℓ Borel sets : t ∈ R+ → µ⊗
ℓ

t (Eℓ) is Borel-measurable}.

On the one hand, it is clear that Pℓ ⊂ Λℓ because for any collection of Borel sets B1, . . . , Bℓ ⊂ Rd

we have that t ∈ R+ 7→ µ⊗
ℓ

t (B1 ⊗ · · · ⊗ Bℓ) = µt(B1) · · ·µt(Bℓ) is Borel-measurable because
it is the product of ℓ measurable functions by hypothesis. Additionally, it is clear that Pℓ is
a π-set, i.e., it is closed under finite intersections, and Λℓ is a λ-system. Specifically, we have
that (Rd)ℓ ∈ Λℓ, if E

1
ℓ ⊂ E2

ℓ ∈ Λℓ then E
2
ℓ \E1

ℓ ∈ Λℓ, and also if {Enℓ }n∈N ⊂ Λℓ is an increasing
sequence, then ∪n∈NEnℓ ∈ Λℓ. Therefore, the π − λ theorem ensures that σ(Pℓ) ⊆ Λℓ. Since

σ(Pℓ) is the Borel σ-algebra of (Rd)ℓ, we conclude by definition of Λℓ. □

Proposition 4.2 (Well-posed characteristics). Assume that the kernels Kℓ verify the assump-
tions (1.6) and (1.7), consider any Borel family of probability measures (µt)t∈R+ ⊂ Pν(Rd ×
[0, 1]), any w = (wℓ)ℓ∈N, and suppose that (4.1) holds. Then, there is a unique global-in-time
Caratheodory solution Xw[µ](t, x, ξ) to the characteristic system

d

dt
Xw[µ](t, x, ξ) = Fw[µt](Xw[µ](t, x, ξ), ξ), t ≥ 0,

Xw[µ](0, x, ξ) = x,
(4.2)

for all x ∈ R and a.e. ξ ∈ [0, 1]. For simplicity of notation, let us denote

T ξ
t [w, µ](x) := Xw[µ](t, x, ξ), t ≥ 0, x ∈ Rd, a.e. ξ ∈ [0, 1]. (4.3)

Then, the following properties hold true:

(i) For every (t, x) ∈ R+ × Rd, the map ξ ∈ [0, 1] 7→ T ξ
t [w, µ](x) is Borel-measurable.

(ii) For a.e. ξ ∈ [0, 1], the map (t, x) ∈ R+ × Rd 7→ T ξ
t [w, µ](x) is continuous.

(iii) For every t ∈ R+ and a.e. ξ ∈ [0, 1], the map x ∈ Rd 7→ T ξ
t [w, µ](x) is Lipschitz-

continuous with Lipschitz constant eLF t.

Proof. By Proposition 4.1 we have that for a.e. ξ ∈ [0, 1], the map

(t, x) ∈ R+ × Rd 7→ Fw[µt](x, ξ),

satisfies the Caratheodory conditions. Specifically:

(a) For every t ≥ 0, the map x ∈ Rd 7→ Fw[µ](x, ξ) is Lipschitz-continuous.
(b) For every x ∈ Rd, the map t ∈ R+ 7→ Fw[µ](x, ξ) is Borel-measurable.
(c) There exists some m ∈ L1

loc(R+) so that |Fw[µt](x, ξ)| ≤ m(t) for all t ≥ 0 and all x ∈ Rd
(e.g., take m(t) = BF for all t ≥ 0 with BF in (4.1)).

Therefore, by Caratheodory’s existence theorem, for every initial datum x ∈ Rd there is a
unique absolutely continuous trajectory t ∈ R+ 7→ Xw[µ](t, x) solving (4.2) in the sense of
Caratheodory, that is, the differential equations holds for a.e. t ≥ 0.

Since Fw is uniformly bounded by Proposition 4.1, and therefore it has sublinear growth, the
trajectories are indeed defined globally in time. Additionally, the continuity in (t, x) ∈ R+×Rd
in item (ii) is clear by the Caratheodory theory, and the Borel-measurability with respect to
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ξ ∈ [0, 1] in item (i) is also true by the measurability of Fw[µ] in Proposition 4.1. Regarding the
Lipschitz-continuity with respect to x ∈ Rd in item (iii) note that

|Xw[µ](t, x, ξ)−Xw[µ](t, x̃, ξ)]|

=

∣∣∣∣ˆ t

0
(Fw[µs](Xw[µ](s, x, ξ), ξ)− Fw[µs](X[µ](s, x̃, ξ), ξ)) ds+ (x− x̃)

∣∣∣∣
≤
ˆ t

0
|Fw[µs](X[µ](s, x, ξ), ξ)− Fw[µs](Xw[µ](s, x̃, ξ), ξ)| ds+ |x− x̃|

≤
ˆ t

0
LF |Xw[µ](s, x, ξ)−Xw[µ](s, x̃, ξ)| ds+ |x− x̃|,

for all t ∈ R+, all x, x̃ ∈ Rd and a.e. ξ ∈ [0, 1], where in the last step we have used the
Lipschitz continuity of Fw[µ](x, ξ) with respect to x ∈ Rd in item (ii) of Proposition 4.1. Thus,
by Grönwall’s lemma, we obtain

|T ξ
t [w, µ](x)− T ξ

t [w, µ](x̃)| ≤ eLF t|x− x̃|,

which implies that T ξ
t [w, µ] is Lipschitz-continuous for all t ∈ R+ and a.e. ξ ∈ [0, 1], and we

further deduce that following control on the Lipschitz constant

[T ξ
t [w, µ]]Lip ≤ eLF t.

□

Remark 4.3. We remark that the scaling conditions on the kernels Kℓ

∞∑
ℓ=1

Bℓ <∞,

∞∑
ℓ=1

Lℓ <∞, (4.4)

which is weaker than (1.9), together with the scaling condition

sup
ℓ∈N

∥wℓ∥L∞ ≤W,

(e.g., w ∈ HW by Definition 2.5) ensure the above hypothesis (4.1) since

BF ≤W

∞∑
ℓ=1

Bℓ, LF ≤W

∞∑
ℓ=1

Lℓ.

4.2. Notion of distributional solution.

Definition 4.4 (Distributional solutions of (2.10)-(2.11)). Consider any curve of probability
measures µ ∈ C([0, T ],Pν(Rd × [0, 1])-narrow) for some T > 0, and any w = (wℓ)ℓ∈N. We say
that µ is a distributional solution of the system (2.10)-(2.11) ifˆ T

0

¨
Rd×[0,1]

(∂tψ(t, x, ξ) + Fw[µt](t, x, ξ) · ∇xψ(t, x, ξ)) dµt(x, ξ) dt

= −
¨

Rd×[0,1]
ψ(0, x, ξ) dµ0(x, ξ), (4.5)

for all ψ ∈ C1
c ([0, T )× Rd × [0, 1]).

We note that, under the assumptions (4.1), the force Fw[µ] is bounded and Borel-measurable
jointly in (t, x, ξ) by Proposition 4.1 because it is Borel-measurable in (t, ξ) and continuous in
the variable x. Therefore, so is the integrand ∂tψ + F [µ] · ∇xψ in the above weak formulation
in Definition 4.4, and therefore distributional solutions are well defined. There is an additional
subtlety coming from the fact that Fw[µ] is defined for a.e. ξ ∈ [0, 1], which could seem
problematic at first glance when integrated agains µt if different representatives take different
values over the atoms of ν. Nevertheless, in this paper we restrict to the Lebesgue measure
ν = dξ⌊[0,1] as justified in Remark 2.21, which eliminates this issue.
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Also note that in Definition 4.4 we may have weakened the time-continuity to simply Borel-
measurability of the family (µt)t∈[0,T ] ⊂ Pν(Rd × [0, 1]), and the above notion of distributional
solutions would still be well defined. However, it is well known that whenever a Borel family
(µt)t∈[0,T ] ⊂ Pν(Rd × [0, 1]) solves a continuity equation in distributional sense and

ˆ T

0

¨
Rd×[0,1]

|Fw[µt](x, ξ)| dµt(x, ξ) dt <∞, (4.6)

which in our case it holds true by Proposition 4.1, then there must exist a time representative
which is narrowly continuous, see [1, Theorem 8.2.1]. For this reason we restrict to solutions
living in C([0, T ],Pν(Rd × [0, 1])) without loss of generality.

Proposition 4.5 (Distributional solutions of (2.10)-(2.11)). Consider any curve of probability

measures µ ∈ C([0, T ],Pν(Rd× [0, 1])-narrow), and its associated Borel family (µξt )(t,ξ)∈[0,T ]×[0,1]

as in the disintegration Theorem 2.20. Then, the following conditions are equivalent:

(i) µ is a distributional solution (2.10)-(2.11).

(ii) For a.e. ξ ∈ [0, 1], (µξt )t∈[0,T ] is a distributional solution to (1.4)-(1.5), i.e.,
ˆ T

0

ˆ
Rd

(∂tφ(t, x) + Fw[µt](t, x, ξ) · ∇xφ(t, x)) dµ
ξ
t (x) dt = −

ˆ
Rd

φ(0, x) dµξ0(x), (4.7)

for all φ ∈ C1
c ([0, T )× Rd).

(iii) For a.e. ξ ∈ [0, 1], (µξt )t∈[0,T ] is the push forward along the flow map, i.e.,

µξt = T ξ
t [w, µ]#µ

ξ
0, a.e. t ≥ 0, (4.8)

where T ξ
t is given in (4.3).

Proof. The proof of the equivalence between (i) and (ii) follows from a density argument identical
to the one used in the proof of the disintegration Theorem 2.20 applied to the integrals in (4.5),
and then we omit it. We then focus on the proof of the equivalence between (ii) and (iii).

Assume that (ii) holds and let us fix a.e. ξ ∈ [0, 1] so that the Borel family (µξt )∈[0,T ], the

force Fw[µt](x, ξ) in (2.10), and its flow map T ξ
t [w, µ](x) in (4.3) are all defined. As discussed

below Theorem 2.20, we do not expect µξ ∈ C([0, T ],Pν(Rd)). However, note thatˆ T

0

ˆ
Rd

|Fw[µt](x, ξ)| dµξt (x) dt <∞,

and therefore [1, Lemma 8.1.2] again ensures the existence of a narrowly continuous representa-

tive of the Borel family (µξt )t∈[0,T ], namely µ̃ξ ∈ C([0, T ],P(Rd)-narrow) such that µξt = µ̃ξt for
a.e. t ∈ [0, T ]. Since the characteristic system associated to Fw[µ](x, ξ) for such a ξ has unique
solutions for all x ∈ Rd, then a standard argument shows that

µ̃t = T ξ
t [w, µ]#µ̃

ξ
0, ∀ t ≥ 0,

see [1, Proposition 8.1.8]. Note that µ̃ξ clearly solves (4.7) for the same initial datum µξ0. Then,

µ̃ξ0 = µξ0 and therefore (4.8) holds true for a.e. t ≥ 0.
Conversely, assume that (iii) holds true and take any φ ∈ C1

c ([0, T )×Rd). Then, using (4.8)
on the left hand side of (4.7) yieldsˆ T

0

ˆ
Rd

(∂tφ(t, x) + Fw[µt](t, x, ξ) · ∇xφ(t, x)) dµ
ξ
t (x) dt

=

ˆ T

0

ˆ
Rd

(
∂tφ(t, T ξ

t [w, µ](x)) + Fw[µt](t, T ξ
t [w, µ](x), ξ) · ∇xφ(t, T ξ

t [w, µ](x))
)
dµξ0(x) dt

=

ˆ T

0

ˆ
Rd

d

dt
φ(t, T ξ

t [w, µ](x)) dµ
ξ
0(x) dt =

ˆ T

0

d

dt

ˆ
Rd

φ(t, T ξ
t [w, µ](x)) dµ

ξ
0(x) dt

= −
ˆ
Rd

φ(0, x) dµξ0(x),
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where we have used the dominated convergence theorem, the fundamental theorem of calculus,
and the fact that φ vanishes at t = T . □

4.3. Fixed point argument. We show the well-posedness of the system (2.10)-(2.11) (or
equivalently, (1.4)-(1.5)) through a fixed point. In view of Definition 4.4 and Proposition 4.5,
solutions could be built in the more general space C([0, T ],Pν(Rd× [0, 1])). However, in Section
5 we will restrict to solutions living in either of the subspaces C([0, T ],Pp,ν(Rd × [0, 1])). For
this reason, we decided to restrict to a well-posedness theory in the later subspaces. Our main
concern is that a quantitative stability estimate similar to the one derived in Section 5, but
operating over solutions lying in the former larger space, seems to require additional Lipschitz-
continuity assumptions wℓ, which we do no want. We remark that this additional assumption
was already present in previous literature for binary interactions [23, 64], as it stems from the
classical Dobrushin stability estimate [28].

In the fixed point argument, we will employ the following additional Lipschitz-continuity
property of the force Fw[µ] in the variable µ with respect to the dp,ν distance.

Proposition 4.6 (Properties of the force II). Assume that the kernels Kℓ verify the assumptions
(1.6) and (1.7), consider any Borel family of probability measures (µt)t∈R+ ⊂ Pν(Rd × [0, 1]),
any w = (wℓ)ℓ∈N, and suppose that

Cp :=

∥∥∥∥∥
∞∑
ℓ=1

BLℓ

ℓ∑
k=1

∥wℓ∥Lq
ξk
L1
ξ̂ℓ,k

∥∥∥∥∥
Lp
ξ

<∞, (4.9)

for some p ∈ [1,∞] and q ∈ [1,∞] so that 1
p +

1
q = 1. Then,

|Fw[µt](x, ξ)− Fw[µ̄t](x, ξ)| ≤

( ∞∑
ℓ=1

BLℓ

ℓ∑
k=1

∥wℓ(ξ, ·)∥Lq
ξk
L1
ξ̂ℓ,k

)
dp,ν(µt, µ̄t),

for all t ∈ R+, all x ∈ Rd, a.e. ξ ∈ [0, 1].

Proof. Note that condition (4.9) in particular implies that the above coefficient

∞∑
ℓ=1

BLℓ

ℓ∑
k=1

∥wℓ(ξ, ·)∥Lq
ξk
L1
ξ̂ℓ,k

,

is finite for a.e. ξ ∈ [0, 1]. Then, we have

|Fw[µt](x, ξ)− Fw[µ̄t](x, ξ)|

=

∞∑
ℓ=1

ℓ∑
k=1

ˆ
[0,1]ℓ

|wℓ(ξ, ξℓ)|

×
ˆ
Rd(ℓ−1)

∣∣∣∣ˆ
Rd

Kℓ(x,xℓ) (dµ
ξk
t (xk)− dµ̄ξkt (xk))

∣∣∣∣ ∏
j<k

dµ
ξj
t (xj)

∏
j>k

dµ̄
ξj
t (xj) d ξℓ

≤
∞∑
ℓ=1

ℓ∑
k=1

ˆ
[0,1]ℓ

|wℓ(ξ, ξℓ)|
ˆ
Rd(ℓ−1)

BLℓ dBL(µ
ξk
t , µ̄

ξk
t )
∏
j<k

dµ
ξj
t (xj)

∏
j>k

dµ̄
ξj
t (xj) d ξℓ

=

∞∑
ℓ=1

BLℓ

ℓ∑
k=1

ˆ 1

0
∥wℓ(ξ, ·)∥L1

ξ̂ℓ,k

dBL(µ
ξk
t , µ̄

ξk
t ) dξk

≤

( ∞∑
ℓ=1

BLℓ

ℓ∑
k=1

∥wℓ(ξ, ·)∥Lq
ξk
L1
ξ̂ℓ,k

)
dp,ν(µt, µ̄t),

for all t ∈ [0, T ] and all x ∈ Rd, where we recall that BLℓ = max{Bℓ, Lℓ} is the bounded-
Lipschitz kernel of each kernel Kℓ as in (1.8), and where in the last step we have used Hölder’s
inequality in the integral with respect to ξk for the exponents p, q ∈ (1,∞) with 1

p +
1
q = 1. □
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Theorem 4.7 (Well-posedness of the Vlasov equation). Assume that the kernels Kℓ verify the
assumptions (1.6) and (1.7), consider any w = (wℓ)ℓ∈N, and suppose that hypothesis (4.1) and
(4.9) hold for some p ∈ [1,∞]. Then, for every µ0 ∈ Pp,ν(Rd × [0, 1]) there exists a unique

µ ∈ C(R+,Pp,ν(Rd × [0, 1])) global-in-time distributional solution to (2.10)-(2.11) issued at µ0.

Proof. We shall restrict our proof to the case 1 < p <∞, but clear adaptations can be done for
the limiting cases p = 1 and p = ∞, and then we will omit those details.

Fix any T > 0 and any initial probability measure µ∗ ∈ Pp,ν(Rd × [0, 1]). For any curve

µ ∈ C([0, T ],Pp,ν(Rd × [0, 1])) we define F [µ] ∈ C([0, T ],Pp,ν(Rd × [0, 1])) by

F [µ]ξt := T ξ
t [w, µ]#µ

ξ
∗, t ∈ [0, T ], a.e. ξ ∈ [0, 1], (4.10)

where T ξ
t is the flow-map (4.3). We recall that by Proposition 4.2 the characteristic system

(4.2) is globally-in-time well posed for a.e. ξ ∈ [0, 1] under the assumptions (4.1). Therefore,

the family of measures (F [µ]ξt )t∈[0,T ]×[0,1] is defined for all t ∈ [0, T ] and a.e. ξ ∈ [0, 1].

⋄ Step 1: We show that F [µ] ∈ C([0, T ],Pp,ν(Rd × [0, 1])).

First, by Proposition 4.2 we have that T ξ
t [µ] is continuous with respect to (t, x) ∈ R+ ×Rd and

Borel-measurable with respect to ξ ∈ [0, 1]. Additionally, (µξ∗)ξ∈[0,1] is also a Borel-measurable.

Altogether implies that, (F [µ]ξt )t∈[0,T ]×[0,1] ⊂ P(Rd) is a Borel family, and then so is the family

(F [µ]t)t∈[0,T ] ⊂ Pν(Rd × [0, 1]). Second, for a.e. ξ ∈ [0, 1] and all 0 ≤ t1 ≤ t2 ≤ T we have

dBL(F [µ]ξt1 ,F [µ]ξt2) = sup
∥ϕ∥BL≤1

ˆ
Rd

ϕ(x)(dF [µ]ξt1(x)− dF [µ]ξt2(x))

= sup
∥ϕ∥BL≤1

ˆ
Rd

(ϕ(T ξ
t1
[w, µ](x))− ϕ(T ξ

t2
[w, µ](x))) dµξ∗(x)

≤ ∥T ξ
t1
[w, µ]− T ξ

t2
[w, µ]∥L∞ ≤

ˆ t2

t1

∥Fw[µt](T ξ
t [µ], ξ)∥L∞ dt ≤ BF |t1 − t2|,

where above we have used the definion of the bounded-Lipschitz metric, the fact that T ξ
t [w, µ] is

the flow map of Fw[µt](·, ξ) and the triangle inequality, along with the uniform bound of Fw[µ]
by BF in Proposition 4.1. Taking Lp-norms with respect to ξ ∈ [0, 1] yields

dp,ν(F [µ]t1 ,F [µ]t2) ≤ BF |t1 − t2|,

for all t1, t2 ∈ [0, T ]. Since F0[µ] = µ∗ ∈ Pp,ν(Rd × [0, 1]), the above along with the triangle

inequality implies that F [µ]t ∈ Pp,ν(Rd × [0, 1]) for all t ∈ [0, T ] and, additionally, F [µ] ∈
C([0, T ],Pp,ν(Rd × [0, 1])) (in fact Lipschitz-continuous in time).

⋄ Step 2: We show that F is contractive for small T .
Consider any couple µ, µ̄ ∈ C([0, T ],Pp,ν(Rd × [0, 1])). For a.e. ξ ∈ [0, 1] and all t ∈ [0, T ] a
similar argument as above yields

dBL(F [µ]ξt ,F [µ̄]ξt ) = sup
∥ϕ∥BL≤1

ˆ
Rd

ϕ(x)(dF [µ]ξt (x)− dF [µ̄]ξt (x))

= sup
∥ϕ∥BL≤1

ˆ
Rd

(ϕ(T ξ
t [w, µ](x))− ϕ(T ξ

t [w, µ̄](x))) dµ
ξ
∗(x)

≤
ˆ
Rd

|Xw[µ](t, x, ξ)−Xw[µ̄](t, x, ξ)| dµξ∗(x). (4.11)

We then need a continuous dependence of the flow map with respect to µ. To this end, note
that by definition of the characteristic system (4.2) we have

|Xw[µ](t, x, ξ)−Xw[µ̄](t, x, ξ)| ≤ I1 + I2, (4.12)

where each factor reads

I1 :=

ˆ t

0
|Fw[µs](Xw[µ](s, x, ξ), ξ)− Fw[µs](Xw[µ̄](s, x, ξ), ξ)| ds, (4.13)
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I2 :=

ˆ t

0
|Fw[µs](Xw[µ̄](s, x, ξ), ξ)− Fw[µ̄s](Xw[µ̄](s, x, ξ), ξ)| ds. (4.14)

For the first term I1 we use the Lipschitz-continuity of the force Fw[µ] with respect to x in
Proposition 4.1, which implies

I1 ≤ LF

ˆ t

0
|Xw[µ](s, x, ξ)−Xw[µ̄](s, x, ξ)| ds. (4.15)

Regarding the second factor, we use Proposition 4.6, which applied to (4.14) yields

I2 ≤

( ∞∑
ℓ=1

BLℓ

ℓ∑
k=1

∥wℓ(ξ, ·)∥Lq
ξk
L1
ξ̂ℓ,k

)ˆ t

0
dp,ν(µs, µ̄s) ds. (4.16)

Plugging (4.15)-(4.16) into (4.12) implies

|Xw[µ](t, x, ξ)−Xw[µ̄](t, x, ξ)| ≤ LF

ˆ t

0
|Xw[µ](s, x, ξ)−Xw[µ̄](s, x, ξ)| ds

+

( ∞∑
ℓ=1

BLℓ

ℓ∑
k=1

∥wℓ(ξ, ·)∥Lq
ξk
L1
ξ̂ℓ,k

)ˆ t

0
dp,ν(µs, µ̄s) ds,

for all t ∈ [0, T ]. Since Xw[µ](0, x, ξ) = x = Xw[µ̄](0, x, ξ), then Grönwall’s lemma implies

|Xw[µ](t, x, ξ)−Xw[µ̄](t, x, ξ)| ≤

( ∞∑
ℓ=1

BLℓ

ℓ∑
k=1

∥wℓ(ξ, ·)∥Lq
ξk
L1
ξ̂ℓ,k

)ˆ t

0
eLF (t−s)dp,ν(µs, µ̄s) ds,

(4.17)

for all t ∈ [0, T ] all x ∈ Rd and a.e. ξ ∈ [0, 1]. Integrating (4.17) with respect to µξ∗(x) in the
variable x, plugging it in (4.11), and taking Lp norms with respect to ξ ∈ [0, 1] yields

dp,ν(F [µ]t,F [µ̄]t) ≤ Cp

ˆ t

0
eLF (t−s)dp,ν(µs, µ̄s) ds,

where the constant Cp is defined in (4.9). Taking the uniform norm with respect to t implies

sup
t∈[0,T ]

dp,ν(F [µ]t,F [µ̄]t) ≤
Cp
LF

(eLFT − 1) sup
t∈[0,T ]

dp,ν(µt, µ̄t). (4.18)

⋄ Step 3: Global-in-time well posedness.
Note that the above ensures that F : C([0, T ],Pp,ν(Rd × [0, 1])) −→ C([0, T ],Pp,ν(Rd × [0, 1]))
is well defined and contractive as long as

T <
1

LF
log

(
1 +

LF
Cp

)
.

Under this condition, by the Banach contraction principle we have that the operator F has
a unique fixed point in C([0, T ],Pp,ν(Rd × [0, 1])). Bearing in mind the particular form of F
in (4.10) and the characterization of distributional solutions in Proposition 4.5, we have that
the fixed point corresponds to the unique distributional solution to (2.10)-(2.11) issued at µ∗
defined in the interval [0, T ]. Iterating the construction on the intervals [kT, (k + 1)T ] for
all k ∈ N, which can be done because the lifespan [0, T ] of the above local-in-time solution
does not depends on the initial datum µ∗, one obtains the unique global-in-time distributional
solution. □

Remark 4.8. We remark that the scaling conditions on the kernels Kℓ

∞∑
ℓ=1

ℓBLℓ <∞, (4.19)

which is weaker than (1.9) but stronger than (4.4), together with the scaling condition

sup
ℓ∈N

∥wℓ∥L∞ ≤W,
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(e.g., w ∈ HW by Definition 2.5) ensure the above hypothesis (4.1) and (4.9) since we have

BF ≤W
∞∑
ℓ=1

Bℓ, LF ≤W
∞∑
ℓ=1

Lℓ, Cp ≤W
∞∑
ℓ=1

ℓBLℓ.

Our remark that Theorem 4.7 does not only operate over absolutely continuous initial mea-
sures, but also over initial measures µ0 having an atomic part leads to the following corollary
for initial measures supported on the graph of a function X0 : [0, 1] −→ Rd.

Corollary 4.9 (Well-posedness of the continuum-limit equation). Under the hypothesis in The-

orem 4.7, assume that X0 ∈ Lp([0, 1],Rd) and set µξ0 = δX0(ξ). Then, the unique solution µ to the

Vlasov equation (2.10)-(2.11) must have the form µξt = δX(t,ξ) where X ∈ C(R+, L
p([0, 1],Rd))

is the unique solution to the continuum-limit equation∂tX(t, ξ) =

∞∑
ℓ=1

ˆ
[0,1]ℓ+1

wℓ(ξ, ξ1, . . . , ξℓ)Kℓ(X(t, ξ), X(t, ξ1), . . . , X(t, ξℓ)) dξ1 . . . dξℓ,

X(0, ·) = X0.

(4.20)

Equation (4.20) can be regarded as the natural higher-order extension of the version with
binary interactions introduced in [58] in the context of non-linear heat equations on dense
graphs. We also refer to [2, 3, 32, 64] for further extensions based on binary interactions. A
higher-order extension similar to (4.20) was recently introduced in [15] to study bifurcation and
stability properties of twisted stated for the Kuramoto model restricted to ternary interactions.

5. Stability estimate of the Vlasov equation over UR-hypergraphons

In this section we study the stability of the solutions to the Vlasov equation (2.10)-(2.11)
with respect to the initial datum µ0 ∈ Pp,ν(Rd×[0, 1]) and the involved UR-hypergraphon
w = (wℓ)ℓ∈N. As in Section 4, we shall not restrict to UR-hypergraphons only, but actually the
stability estimate will be applicable to a broader class of w.

Theorem 5.1 (Stability estimate for the Vlasov equation). Assume that the kernels Kℓ verify

the assumptions (1.6) and (1.7), and also that Kℓ ∈ L1(Rd(ℓ+1)) for all ℓ ∈ N. Consider
w = (wℓ)ℓ∈N and w̄ = (w̄ℓ)ℓ∈N satisfying the assumptions (4.1) and (4.9) for common constants
BF , LF , Cp > 0, and additionally suppose that

∞∑
ℓ=1

4ℓ∥K̂ℓ∥L1 <∞, D∞ :=

∞∑
ℓ=1

2ℓ(∥wℓ∥L∞ + ∥w̄ℓ∥L∞)∥K̂ℓ∥L1 <∞, (5.1)

For any initial data µ0, µ̄0 ∈ Pp,ν(Rd× [0, 1]) with p ∈ [1,∞), let µ, µ̄ ∈ C(R+,Pp,ν(Rd× [0, 1]))
be the unique global-in-time distributional solutions to (2.10)-(2.11) issued at µ0 with given w
(respectively, µ̄0 and w̄) as in Theorem 4.7. Then, we have

dp,ν(µt, µ̄t) ≤ e(Cp+LF )t

(
dp,ν(µ0, µ̄0) +

D
1/q
∞
LF

d□(w, w̄; (4
ℓ∥K̂ℓ∥L1)ℓ∈N)

1/p

)
,

for every t ≥ 0, where 1
p +

1
q = 1 and d□ is the labeled cut distance in Definition 2.5.

We note that under the hypothesis (5.1), the sequence (4ℓ∥K̂ℓ∥)ℓ∈N is summable and therefore

the labeled cut distance d□(w, w̄; (4
ℓ∥K̂ℓ∥L1)ℓ∈N) in the stability estimate is well defined. Whilst

above w = (wℓ)ℓ∈N do not restrict to UR-hypergraphons only, we anticipate that in order for
the stability estimate to be useful in the proof of the main Theorem 1.1 in Section 6 we will
have to restrict to UR-hypergraphons. More particularly, from the results in the hypergraph
limit theories in Section 2.2 we can only guarantee the decay of the cut distance in the class
HW of UR-hypergraphons as described in Proposition 2.7.
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Remark 5.2 (On the Sobolev regularity assumption). We remark that the regularity-scaling
conditions (1.10) on the kernels Kℓ, and the scaling condition on the weights wℓ

sup
ℓ∈N

∥wℓ∥L∞ ≤W,

(i.e., w ∈ HW by Definition 2.5) ensure the above hypothesis (5.1) since we have

D∞ ≤W
∞∑
ℓ=1

4ℓ∥K̂ℓ∥L1 ≲
4ℓπ

dℓ
4√

Γ(dℓ2 )
∥Kℓ∥

H
d(ℓ+1)

2 +ε
.

Specifically, note that for any ℓ ∈ N and setting k = d(ℓ+1)
2 + ε for some ε > 0 arbitrarily small,

the Cauchy-Schwarz inequality implies ∥K̂ℓ∥L1 ≤ α
1/2
ℓ β

1/2
ℓ , where

αℓ :=

ˆ
Rd(ℓ+1)

1

(1 + |z|2 + | zℓ |2)k
dz d zℓ,

βℓ :=

ˆ
Rd(ℓ+1)

(1 + |z|2 + | zℓ |2)k|K̂ℓ(z, zℓ)|2 dz d zℓ .

On the one hand, the first integral is finite because 2k > d(ℓ+ 1) by our choice of k. In fact, it
can be calculated explicitly in polar coordinated leading to

αℓ = ωd(ℓ+1)−1

ˆ ∞

0

rd(ℓ+1)−1

(1 + r2)k
dr =

ωd(ℓ+1)−1

2
B

(
d(ℓ+ 1)

2
,
ε

2

)
,

where ωd(ℓ+1)−1 = 2πd(ℓ+1)/2

Γ(d(ℓ+1)/2) is the area of the sphere of Rd(ℓ+1) and B(a, b) = Γ(a)Γ(b)
Γ(a+b) =´∞

0
sa−1

(1+s)a+b ds is the Beta function. Therefore,

αℓ =
π

d(ℓ+1)
2 Γ( ε2)

Γ(d(ℓ+1)
2 + ε)

≲
π

dℓ
2

Γ(dℓ2 )
.

On the other hand, by definition of the fractional Sobolev through Bessel potentials we have

β
1/2
ℓ = ∥K̂ℓ∥Hk = ∥K̂ℓ∥

H
d(ℓ+1)

2 +ε
.

Proof of Theorem 5.1. We restrict our proof to the case p > 1 but clear adaptations can be
done to prove the case p = 1.

⋄ Step 1: We obtain a first bound for the bounded-Lipschitz distance between µξt and µ̄
ξ
t .

By item (iii) of Proposition 4.5 we know that for a.e. ξ ∈ [0, 1] the distributional solutions µ
and µ̄ must satisfy

µξt = T ξ
t [w, µ]#µ

ξ
0, µ̄ξt = T ξ

t [w̄, µ̄]#µ̄
ξ
0,

for a.e. t ∈ R+, and in fact, the time-continuous representatives obtained in Theorem 4.7 satisfy
the above for all t ∈ R+. Therefore, we have

dBL(µ
ξ
t , µ̄

ξ
t ) = sup

∥ϕ∥BL≤1

ˆ
Rd

ϕ(T ξ
t [w, µ](x)) dµ

ξ
0(x)−

ˆ
Rd

ϕ(T ξ
t [w, µ̄](x)) dµ̄

ξ
0(x)

≤ sup
∥ϕ∥BL≤1

ˆ
Rd

(
ϕ(T ξ

t [w, µ](x))− ϕ(T ξ
t [w̄, µ̄](x))

)
dµξ0(x)

+ sup
∥ϕ∥BL≤1

ˆ
Rd

ϕ(T ξ
t [w̄, µ̄](x)) d(µ

ξ
0 − µ̄ξ0)(x)

≤
ˆ
Rd

|Xw[µ](t, x, ξ)−Xw̄[µ̄](t, x, ξ)| dµξ0(x) + eLF tdBL(µ
ξ
0, µ̄

ξ
0),

(5.2)

where in the last line we have observed that since ϕ ∈ BL1(Rd), for all t ∈ R+ and a.e.

ξ ∈ [0, 1] the maps x ∈ Rd 7→ ϕ(T ξ
t [w, µ](x)) are bounded and Lipschitz-continuous with BL

norm bounded by eLF t thanks to item (iii) in Proposition 4.2.
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⋄ Step 2: We control the difference |Xw[µ](t, x, ξ)−Xw̄[µ̄](t, x, ξ)|.
This step is similar to Step 2 in the proof of Theorem 4.7, where a similar estimate was obtained
in (4.17) in the particular case that w = w̄ and µ0 = µ̄0. Since this is the key step of the proof,
which involves a certain continuity of the flow map with respect to the underlying w and w̄, we
provide a proof. For all t ∈ [0, T ] and a.e. ξ ∈ [0, 1], we get

|Xw[µ](t, x, ξ)−Xw̄[µ̄](t, x, ξ)|

=

∣∣∣∣ˆ t

0
(Fw[µs](Xw[µ](s, x, ξ), ξ)− Fw̄[µ̄s](Xw̄[µ̄](s, x, ξ), ξ)) ds

∣∣∣∣
≤
ˆ t

0
|Fw[µs](Xw[µ](s, x, ξ), ξ)− Fw[µs](Xw̄[µ̄](s, x, ξ), ξ)| ds

+

ˆ t

0
|Fw[µs](Xw̄[µ̄](s, x, ξ), ξ)− Fw̄[µ̄s](Xw̄[µ̄](s, x, ξ), ξ)| ds

=: I3 + I4.

(5.3)

Regarding the first term I3, the Lipschitz continuity property of the force Fw[µs](x, ξ) with
respect to x in item (ii) of Proposition 4.1 implies

I3 ≤ LF

ˆ t

0
|Xw[µ](s, x, ξ)−Xw̄[µ̄](s, x, ξ)| ds. (5.4)

Regarding the second term I4, we can rewrite it as I4 = I41 + I42, where

I41 :=

ˆ t

0
|Fw[µs](Xw̄[µ̄](s, x, ξ), ξ)− Fw[µ̄s](Xw̄[µ̄](s, x, ξ), ξ)| ds,

I42 :=

ˆ t

0
|Fw[µ̄s](Xw̄[µ̄](s, x, ξ), ξ)− Fw̄[µ̄s](Xw̄[µ̄](s, x, ξ), ξ)| ds.

From Proposition 4.6, we know that

I41 ≤
ˆ t

0

( ∞∑
ℓ=1

BLℓ

ℓ∑
k=1

∥wℓ(ξ, ·)∥Lq
ξk
L1
ξ̂ℓ,k

)
dp,ν(µs, µ̄s)ds. (5.5)

Besides, using the expression (1.5) of the forces Fw[µ̄s] and Fw̄[µ̄s] we get

I42 ≤
ˆ t

0

∞∑
ℓ=1

∣∣∣∣∣
ˆ
[0,1]ℓ

(wℓ(ξ, ξ1, . . . , ξℓ)− w̄ℓ(ξ, ξ1, . . . , ξℓ))

×
(ˆ

Rdℓ

Kℓ(Xw̄[µ̄](s, x, ξ), x1, . . . , xℓ) dµ̄
ξ1
s (x1) · · · dµ̄ξℓs (xℓ)

)
dξ1 . . . dξℓ

∣∣∣∣ ds.
(5.6)

Each of the integrals on [0, 1]ℓ is reminiscent of the action of the ℓ-th order adjacency operator
Twℓ−w̄ℓ over the function

(ξ1, . . . , ξℓ) ∈ [0, 1]ℓ 7−→
ˆ
Rdℓ

Kℓ(Xw̄[µ̄](s, x, ξ), x1, . . . , xℓ) dµ̄
ξ1
s (x1) · · · dµ̄ξℓs (xℓ).

However, the later does not have separate variables and therefore we cannot readily invoke the
ℓ-th order cut distance. To this end, inspired by [13] (where the binary case ℓ = 1 on a one-
dimensional periodic domain was considered) or also [29, 62], we write Kℓ as a superposition of
functions with separate variables via the Fourier inversion formula

Kℓ(x, x1, . . . , xℓ) =

ˆ
Rd(ℓ+1)

e2πi (x·z+x1·z1+···+xℓ·zℓ)K̂ℓ(z, z1, . . . , zℓ) dz dz1 . . . dzℓ,

with K̂ℓ the Fourier transform. We note that K̂ℓ are all well defined because Kℓ ∈ L1(Rd(ℓ+1))
by our assumptions, and also the inversion formula holds with an absolutely convergent integral
because we are further assuming that K̂ℓ ∈ L1(Rd(ℓ+1)). Defining the function

g(s, z, ξ) :=

ˆ
Rd

e2πix·z dµ̄ξs(x), s ∈ R+, z ∈ Rd, ξ ∈ [0, 1],
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and since |e2πiXw̄[µ̄](s,x,ξ)| = 1, we can reformulate the term I42 as follows

I42 ≤
ˆ t

0

∞∑
ℓ=1

ˆ
Rd(ℓ+1)

|K̂ℓ(z, zℓ)|

∣∣∣∣∣
ˆ
[0,1]ℓ

(wℓ(ξ, ξℓ)− w̄ℓ(ξ, ξℓ))

ℓ∏
k=1

g(s, zk, ξk) d ξℓ

∣∣∣∣∣ dz d zℓ ds
=

ˆ t

0

∞∑
ℓ=1

ˆ
Rd(ℓ+1)

|K̂ℓ(z, zℓ)|
∣∣∣T̃wℓ−w̄ℓ [g(s, z1, ·), . . . , g(s, zℓ, ·)] (ξ)

∣∣∣ dz d zℓ ds.
(5.7)

Above, and since g is complex-valued, we have extended the definition of the adjacency operator
(2.1) to complex valued-functions as follows, T̃wℓ−w̄ℓ : L∞([0, 1],C)ℓ −→ L1([0, 1],C) such that

T̃wℓ−w̄ℓ [g1, . . . , gℓ] =

ˆ
[0,1]ℓ

(wℓ(ξ, ξℓ)− w̄ℓ(ξ, ξℓ)) g1(ξ1) · · · gℓ(ξℓ) dξ d ξℓ,

for all g1, . . . , gℓ ∈ L∞([0, 1],C). Thus, putting (5.4), (5.5) and (5.7) into (5.3) we get

|Xw[µ](t, x, ξ)−Xw̄[µ̄](t, x, ξ)|

≤ LF

ˆ t

0
|Xw[µ](s, x, ξ)−Xw̄[µ̄](s, x, ξ)| ds

+

ˆ t

0

( ∞∑
ℓ=1

BLℓ

ℓ∑
k=1

∥wℓ(ξ, ·)∥Lq
ξk
L1
ξ̂ℓ,k

)
dp,ν(µs, µ̄s) ds

+

ˆ t

0

∞∑
ℓ=1

ˆ
Rd(ℓ+1)

|K̂ℓ(z, zℓ)|
∣∣∣T̃wℓ−w̄ℓ [g(s, z1, ·), . . . , g(s, zℓ, ·)] (ξ)

∣∣∣ dz d zℓ ds.
(5.8)

⋄ Step 3: We deduce a bound on the integrated difference.

We integrate the above inequality (5.8) with respect to µξ0(x). Thus, we getˆ
Rd

|Xw[µ](t, x, ξ)−Xw̄[µ̄](t, x, ξ)| dµξ0(x)

≤ LF

ˆ t

0

ˆ
Rd

|Xw[µ](s, x, ξ)−Xw̄[µ̄](s, x, ξ)| dµξ0(x) ds

+

ˆ t

0

( ∞∑
ℓ=1

BLℓ

ℓ∑
k=1

∥wℓ(ξ, ·)∥Lq
ξk
L1
ξ̂ℓ,k

)
dp,ν(µs, µ̄s) ds

+

ˆ t

0

∞∑
ℓ=1

ˆ
Rd(ℓ+1)

|K̂ℓ(z, zℓ)|
∣∣∣T̃wℓ−w̄ℓ [g(s, z1, ·), . . . , g(s, zℓ, ·)] (ξ)

∣∣∣ dz d zℓ ds.
By applying Grönwall’s lemma, we obtainˆ

Rd

|Xw[µ](t, x, ξ)−Xw̄[µ̄](t, x, ξ)| dµξ0(x)

≤
ˆ t

0
eLF (t−s)

{( ∞∑
ℓ=1

BLℓ

ℓ∑
k=1

∥wℓ(ξ, ·)∥Lq
ξk
L1
ξ̂ℓ,k

)
dp,ν(µs, µ̄s)

+
∞∑
ℓ=1

ˆ
Rd(ℓ+1)

|K̂ℓ(z, zℓ)|
∣∣∣T̃wℓ−w̄ℓ [g(s, z1, ·), . . . , g(s, zℓ, ·)] (ξ)

∣∣∣ dz d zℓ
}
ds.

(5.9)

⋄ Step 4: We obtain a bound for the operator norm of T̃wℓ−w̄ℓ .
We start by obtaining a bound for the operator norm of the real-valued operators Twℓ−w̄ℓ . By
the assumption (5.1) on w and w̄ we have that Twℓ−w̄ℓ is a bounded multilinear operator from
L∞([0, 1])ℓ to L1([0, 1]), but also from L∞([0, 1])ℓ to L∞([0, 1]). By interpolation, Twℓ−w̄ℓ is a
bounded multilinear operator from L∞([0, 1])ℓ to any Lp([0, 1]). More precisely, we have

∥Twℓ−w̄ℓ [ψ1, . . . , ψℓ] ∥Lp
ξ
≤ ∥Twℓ−w̄ℓ [ψ1, . . . , ψℓ] ∥

1/q
L∞
ξ
∥Twℓ−w̄ℓ [ψ1, . . . , ψℓ] ∥

1/p

L1
ξ
,
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for any ψ1, . . . , ψℓ ∈ L∞([0, 1]). Besides,

∥Twℓ−w̄ℓ [ψ1, . . . , ψℓ] ∥L∞
ξ

= ess sup
ξ∈[0,1]

∣∣∣∣∣
ˆ
[0,1]ℓ

(wℓ(ξ, ξ1, . . . , ξℓ)− w̄ℓ(ξ, ξ1, . . . , ξℓ))ψ1(ξ1) · · ·ψℓ(ξℓ) dξ1 . . . dξℓ

∣∣∣∣∣
≤ (∥wℓ∥L∞ + ∥w̄ℓ∥L∞)∥ψ1∥L∞ · · · ∥ψℓ∥L∞ ,

and also

∥Twℓ−w̄ℓ [ψ1, . . . , ψℓ] ∥L1
ξ

=

ˆ
[0,1]

∣∣∣∣∣
ˆ
[0,1]ℓ

(wℓ(ξ, ξ1, . . . , ξℓ)− w̄ℓ(ξ, ξ1, . . . , ξℓ))ψ1(ξ1) · · ·ψℓ(ξℓ) dξ1 . . . dξℓ

∣∣∣∣∣ dξ
≤ ∥Twℓ−w̄ℓ∥(L∞)ℓ→L1∥ψ1∥L∞ · · · ∥ψℓ∥L∞ ,

by definition of the operator norm. Thus, we deduce that

∥Twℓ−w̄ℓ [ψ1, . . . , ψℓ] ∥Lp
ξ
≤ (∥wℓ∥L∞ + ∥w̄ℓ∥L∞)1/q∥Twℓ−w̄ℓ∥1/p

(L∞)ℓ→L1 ∥ψ1∥L∞ · · · ∥ψℓ∥L∞ ,

(5.10)
for every ψ1, . . . , ψℓ ∈ L∞([0, 1]).

Now, we move to the bound of T̃wℓ−w̃ℓ . Given g1, . . . , gℓ ∈ L∞([0, 1],C), we write gk = φk+iψk
for real and imaginary parts φk, ψk ∈ L∞([0, 1]). Expanding the products g1(ξ1) · · · gℓ(ξℓ) in

T̃wℓ−w̄ℓ [g1, . . . , gℓ] into real and imaginary parts through some combinatorics, taking Lp norm,
using the triangly inequality and applying (5.10) on each term we have

∥ |T̃wℓ−w̄ℓ [g1, . . . , gℓ]| ∥Lp
ξ
≤ (∥wℓ∥L∞ + ∥w̄ℓ∥L∞)1/q∥Twℓ−w̄ℓ

∥1/p
(L∞)ℓ→L1

×

⌊ℓ/2⌋∑
k=0

∑
I⊂J1,ℓK
#I=2k

∏
j /∈I

∥φj∥L∞
∏
j∈I

∥ψj∥L∞ +

⌊(ℓ−1)/2⌋∑
k=0

∑
I⊂J1,ℓK

#I=2k+1

∏
j /∈I

∥φj∥L∞
∏
j∈I

∥ψj∥L∞

 .

In particular, if ∥gk∥L∞ ≤ 1 then also ∥φk∥L∞ ≤ 1 and ∥ψk∥L∞ ≤ 1, which implies

∥ |T̃wℓ−w̄ℓ [g1, . . . , gℓ]| ∥Lp
ξ
≤ (∥wℓ∥L∞ + ∥w̄ℓ∥L∞)1/q∥Twℓ−w̄ℓ∥1/p

(L∞)ℓ→L1

×

⌊ℓ/2⌋∑
k=0

(
ℓ

2k

)
+

⌊(ℓ−1)/2⌋∑
k=0

(
ℓ

2k + 1

) .

Since the above sums of binomial coefficients equals 2ℓ then we have

∥ |T̃wℓ−w̄ℓ [g1, . . . , gℓ]| ∥Lp
ξ
≤ 2ℓ(∥wℓ∥L∞ + ∥w̄ℓ∥L∞)1/q∥Twℓ−w̄ℓ∥1/p

(L∞)ℓ→L1 , (5.11)

for all g1, . . . , gℓ ∈ L∞([0, 1],C) with ∥gk∥L∞ ≤ 1.

⋄ Step 5: Stability estimate.
Plugging (5.9) into (5.2) implies

dBL(µ
ξ
t , µ̄

ξ
t ) ≤ eLF tdBL(µ

ξ
0, µ̄

ξ
0)

+

ˆ t

0
eLF (t−s)

{( ∞∑
ℓ=1

BLℓ

ℓ∑
k=1

∥wℓ(ξ, ·)∥Lq
ξk
L1
ξ̂ℓ,k

)
dp,ν(µs, µ̄s)

+
∞∑
ℓ=1

ˆ
Rd(ℓ+1)

|K̂ℓ(z, zℓ)|
∣∣∣T̃wℓ−w̄ℓ [g(s, z1, ·), . . . , g(s, zℓ, ·)] (ξ)

∣∣∣ dz d zℓ
}
ds.

Taking Lp norms with respect to ξ and by Minkowski’s integral inequality, we deduce

dp,ν(µt, µ̄t) ≤ eLF tdp,ν(µ0, µ̄0)
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+

ˆ t

0
eLF (t−s)

{
Cp dp,ν(µs, µ̄s)

+
∞∑
ℓ=1

ˆ
Rd(ℓ+1)

|K̂ℓ(z, zℓ)|
∥∥∥ |T̃wℓ−w̄ℓ [g(s, z1, ·), . . . , g(s, zℓ, ·)] |

∥∥∥
Lp
ξ

dz d zℓ

}
ds

≤ eLF tdp,ν(µ0, µ̄0)

+

ˆ t

0
eLF (t−s)

{
Cp dp,ν(µs, µ̄s) +

∞∑
ℓ=1

2ℓ∥K̂ℓ∥L1∥Twℓ−w̄ℓ∥1/p
(L∞)ℓ→L1(∥wℓ∥L∞ + ∥w̄ℓ∥L∞)1/q

}
ds.

where in the last inequality we have used the interpolation inequality (5.11) with test functions
gk(ξ) = g(s, zk, ξ) for k = 1, . . . , ℓ, which belong to L∞([0, 1],C) and have norm bounded by 1.

We multiply both sides by e−LF t and get

e−LF tdp,ν(µt, µ̄t) ≤ dp,ν(µ0, µ̄0)

+

ˆ t

0
Cpe

−LF sdp,ν(µs, µ̄s)ds

+

(ˆ t

0
e−LF sds

) ∞∑
ℓ=1

2ℓ∥K̂ℓ∥L1∥Twℓ−w̄ℓ∥1/p
(L∞)ℓ→L1(∥wℓ∥L∞ + ∥w̄ℓ∥L∞)1/q

≤ dp,ν(µ0, µ̄0) +
1

LF

∞∑
ℓ=1

2ℓ∥K̂ℓ∥L1∥Twℓ−w̄ℓ∥1/p
(L∞)ℓ→L1(∥wℓ∥L∞ + ∥w̄ℓ∥L∞)1/q

+

ˆ t

0
Cpe

−LF sdp,ν(µs, µ̄s)ds.

We finally apply Grönwall’s lemma and obtain

e−LF tdp,ν(µt, µ̄t)

≤

(
dp,ν(µ0, µ̄0) +

1

LF

∞∑
ℓ=1

2ℓ∥K̂ℓ∥L1∥Twℓ−w̄ℓ∥1/p
(L∞)ℓ→L1(∥wℓ∥L∞ + ∥w̄ℓ∥L∞)1/q

)
eCpt.

Multiplying the above by eLF t and using Hölder’s inequality on the sum over ℓ ∈ N we deduce

dp,ν(µt, µ̄t) ≤ e(Cp+LF )t

{
dp,ν(µ0, µ̄0)

+
1

LF

( ∞∑
ℓ=1

2ℓ∥K̂ℓ∥L1(∥wℓ∥L∞ + ∥w̄ℓ∥L∞)

)1/q ( ∞∑
ℓ=1

2ℓ∥K̂ℓ∥L1∥Twℓ−w̄ℓ∥(L∞)ℓ→L1

)1/p}
,

for all t ≥ 0, which ends the proof by the definition of labeled cut distance d□(w, w̄; (4
ℓ∥K̂ℓ∥L1)ℓ∈N)

in Definition 2.5, its relation to the multilinear operator norms in Proposition 2.6, and by defi-
nition of the constant D∞. □

Remark 5.3 (On the order-dependent regularity). We note that assumption (5.1) is imposing

as it is order-dependent, and therefore the larger ℓ ∈ N, the stronger the decay we need on K̂ℓ,
or alternatively the smoother Kℓ (cf. Remark 5.2). This is due to the high generality of the
kernels Kℓ(x, x1, . . . , xℓ), which have no special structure. However, for special kernels like

Kℓ(x, x1, . . . , xℓ) = Gℓ

(
x− x1 + · · ·+ xℓ

ℓ

)
, (x, x1, . . . , xℓ) ∈ Rd(ℓ+1),

we could have followed an alternative approach for the separation of variables argument in
Step 2 of the proof of Theorem 5.1. Specifically, as long as Gℓ ∈ L1 and also Ĝℓ ∈ L1 (e.g. by
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assuming that Gℓ ∈ H
d
2
+ε) the Fourier inversion formula of Gℓ allows writtingˆ

Rdℓ

Kℓ(Xw̄[µ̄](s, x, ξ), x1, . . . , xℓ) dµ̄
ξ1
s (x1) · · · dµ̄ξℓs (xℓ)

=

ˆ
Rd

e2πiXw̄[µ̄](s,x,ξ)·z g(s, z, ξ1) · · · g(s, z, ξℓ) Ĝℓ(z) dz,

and the above follows with T̃wℓ−w̄ℓ
[g(s, z1, ·), . . . g(s, zℓ, ·)] replaced by T̃wℓ−w̄ℓ

[g(s, z, ·), . . . g(s, z, ·)].

Remark 5.4 (On kernels in the Wiener algebra). The proof of Theorem 5.1 actually does not

require that K̂ℓ ∈ L1(Rd(ℓ+1)), but rather that Kℓ is the Fourier transform of a finite Borel
measure. This condition still guarantees the good separation of variables which we exploited
above. Specifically, it is enough if Kℓ ∈ A(Rd(ℓ+1)), where A(Rd) represents the Wiener algebra
of absolutely convergent Fourier integrals of complex finite Borel measures, that is,

A(Rd) :=
{
f : f(x) =

ˆ
Rd(ℓ+1)

e−2πix·y dµ(y) for all x ∈ Rd, µ ∈ M(Rd)
}
,

with norm ∥f∥A := ∥µ∥TV, see [51] for further details. In this case, (5.1) can be replaced by

∞∑
ℓ=1

4ℓ∥Kℓ∥A <∞,

∞∑
ℓ=1

2ℓ(∥wℓ∥L∞ + ∥w̄ℓ∥L∞)∥Kℓ∥A <∞,

This condition relaxes the integrability assumptions of Kℓ and some of its derivatives as we
observe for example in the following radial function

f(x) = 1− 1

(1 + 4π2|x|2)α/2
, x ∈ Rd,

for any 0 < α < d
2 . Specifically, f ∈ A(Rd) with associated finite Borel measure

µ(x) = δ0(x) +Gα(x) dx,

where Gα is the Bessel kernel

Gα(x) =
1

(4π)α/2Γ(α2 )

ˆ ∞

0

e−
π|x|2

r
− r

4π

r
d−α
2

+1
dr, x ∈ Rd,

see [70, Chapter 5, Section 2, Proposition 2]. However, f /∈ H
d
2
+ε(Rd) since it does not even

decay at infinity. Indeed f /∈ L2(Rd) and more generally f /∈ Ḣs(Rd) unless s > d
2 − α.

Remark 5.5 (On the necessity of p <∞). We also note that the case p = ∞ has been excluded
in Theorem 5.1. Whilst the same argument works, the dependency on the labeled cut distance
d□(wℓ, w̄ℓ; (4

ℓ∥K̂ℓ∥L1)ℓ∈N) is lost (as it appears raised to the power 1/p), meaning that Theorem
5.1 is no longer able to quantify stability with respect to the involved w in the cut distance.

As discussed in Section 2.1.3, other analogous stability estimates studied thus far both for
the case of binary [46], and higher-order interactions [47] rely on L∞ estimates, which explains
why stability of the Vlasov equation with respect to the graphon in the cut distance (a natural
topology in graph limits theory) has not been much explored except for probably in the recent
paper [13] and also [39, 40], but rather with respect to stronger distances.

Slightly changing how we control the factor (5.6) in Step 2, we may still produce an L∞

version of the stability estimate involving an L∞
ξ L

1
ξ norm on wℓ − w̄ℓ

d∞,ν(µt, µ̄t) ≤ e(C∞+LF )t

d∞,ν(µ0, µ̄0) +
1

LF

∥∥∥∥∥∑
ℓ=1

Bℓ∥wℓ − w̄ℓ∥L1
ξ

∥∥∥∥∥
L∞
ξ

 ,

for all t ≥ 0, or a weaker uniform bounded-Lipschitz distance as in [46, 47], when restricted to
solutions continuous in ξ ∈ [0, 1]. Nevertheless, in doing so we would no longer be in position
to exploit the natural compactness property of the cut distance studied in [66].
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Following the same train of thoughts as in Corollary 4.9, we note that Theorem 5.1 can also

be applied to special solutions µξt = δX(t,ξ) and µ̄
ξ
t = δX̄(t,ξ) to (1.4)-(1.5), where X and X̄ solve

the corresponding continuum-limit equation (4.20).

Corollary 5.6 (Stability of the continuum-limit equation). Under the hypothesis in Theorem
5.1, consider X, X̄ ∈ C(R+, L

p([0, 1],Rd)) solutions to the continuum-limit equation (4.20) with
given w and w̄. Then, we have

∥X(t, ·)− X̄(t, ·)∥Lp ≤ e(Cp+LF )t

(
∥X0 − X̄0∥Lp +

D
1/q
∞
LF

d□(w, w̄; (4
ℓ∥K̂ℓ∥L1)ℓ∈N)

1/p

)
,

for all t ∈ R+.

We refer to [58] and also [2, 3, 32, 64] for stability estimates in analogous continuum-limit
equations restricted to binary interactions only. However, we emphasize that, to the best of our
knowledge, Corollary 5.6 is the first result that allows for a graph-limit based distance in place
of the stronger Lp based distances in previous literature.

6. Proof of main Theorem 1.1

In this section we focus on the proof of the main result of the paper, namely, Theorem 1.1,
which we state below in a more rigorous formulation for clarity of the presentation.

Theorem 6.1 (Mean-field limit). Assume that the kernels Kℓ and the weights wℓ,Nij1...jℓ verify

Assumptions 1, 2 and 3. For any (XN
1,0, . . . , X

N
N,0) with i.i.d. XN

i,0 (but N dependent law)

verifying Assumption 4 for some p ∈ [1, 2], consider the unique solutions (XN
1 , . . . , X

N
N ) to

(1.3), and define the pair (µN , wN ) as in Definition 3.5, i.e.,

µN,ξt :=
N∑
i=1

1INi
(ξ)δXN

i (t), ξ ∈ [0, 1],

wNℓ (ξ, ξ1, . . . , ξℓ) :=

N∑
i,j1,...,jℓ=1

1INi ×INj1×···×INjℓ
(ξ, ξ1, . . . , ξℓ)N

ℓwℓ,Nij1···jℓ , ξ, ξ1, · · · , ξℓ ∈ [0, 1].

Then, there are a subsequence Nk → ∞, some measure-preserving maps Φk : [0, 1] −→ [0, 1] and
a distributional solution µ ∈ C(R+,Pp,ν(Rd× [0, 1])) to (2.10)-(2.11) for some UR-hypergraphon
w = (wℓ)ℓ∈N ∈ HW such that

sup
t∈[0,T ]

E dp,ν(µNk,Φk
t , µt) → 0, d□(w

Nk,Φk , w) → 0 (6.1)

for all T ∈ R+, where µ
Nk,Φk
t and wNk,Φk = (wNk,Φk

ℓ )ℓ∈N represent the rerrangements

µNk,Φk,ξ
t = µ

Nk,Φk(ξ)
t , wNk,Φk

ℓ (ξ, ξ1, . . . , ξℓ) = wNk(Φk(ξ),Φk(ξ1), . . . ,Φk(ξℓ)).

Remark 6.2 (On the i.i.d. assumption of initial data). We observe that whilst throughout the
paper initial data (XN

1,0, . . . , X
N
N,0) were only assumed independent, in the statement of our main

Theorem 6.1 we further impose that they are identically distributed according to the same law
(possibly depending on N but not i). Similar assumptions are considered in previous literature,
see [13]. As we shall show, this hypothesis is only a sufficient condition which helps proving
compactness of initial data in Step 1 of the proof, as in that case initial data consist of measures
with constant disintegrations, and then compactness in Pp,ν(Rd× [0, 1]) amounts to compactness

in P(Rd). However, it could be possible to remove the i.i.d. property and also prove compactness
of non-constant initial data, in a compatible way with the compactness of the UR-hypergraphons

wN associated to the finite weights wℓ,Nij1···jℓ. We leave this question for future work.
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Proof of Theorem 6.1. Let (X̄N
1 , . . . , X̄

N
N ) be the unique solution to (3.1) in Lemma 3.1, (λ̄N,i)1≤i≤N

their associated laws (3.14), and (µ̄N,ξ)ξ∈[0,1] the graphon reformulation in Definition 3.5, i.e.,

µ̄N,ξt :=
N∑
i=1

1INi
(ξ)λ̄N,it , ξ ∈ [0, 1].

The proof is divided into four steps. First, we define the limiting µ and w solving the Vlasov
equation (2.10)-(2.11). Second, we study the fluctuation of fibered measures µN associated with
the original multi-agent system (1.3) with respect to the fibered measures µ̄N associated with
the intermediate multi-agent system (3.1). Third, we study the fluctuations of µ̄N with respect
to the obtained limiting solution µ. Finally, we compare µN and µ.

⋄ Step 1: Definition of the limiting w and µ.
Regarding the definition of the limiting w, we note that by assumptions (1.12) and (1.13) we
have that wN = (wNℓ )ℓ∈N ∈ HW with uniform bound W > 0. Therefore, by [66, Lemma 33]

there exists w = (wℓ)ℓ∈N ∈ HW with the same W such that δ□(w
Nk , w) → 0 for a suitable

subsequence Nk. Since δ□ represents the unlabeled cut distance, the above means that there
exists Φk : [0, 1] −→ [0, 1] measure-preserving maps such that

d□(w
Nk,Φk , w) → 0, (6.2)

where d□ is the labeled cut distance and wNk,Φk = (wNk,Φk
ℓ )ℓ∈N is the rearranged UR-hypergraphon

wNk,Φk
ℓ (ξ, ξ1, . . . , ξℓ) = wNk(Φk(ξ),Φk(ξ1), . . . ,Φk(ξℓ)).

For practical reasons we similarly define the rearranged µNk,Φk and µ̄Nk,Φk as follows

µNk,Φk,ξ
t = µ

Nk,Φk(ξ)
t , µ̄Nk,Φk,ξ

t = µ̄
Nk,Φk(ξ)
t .

Regarding the definition of the limiting µ, we first prescribe its initial datum µ0. Since
(XN

i,0)1≤i≤N are distributed identically according to some λN ∈ P(Rd), then µ̄N0 has constant

disintegrations, and for this reason so does the rearranged µ̄Nk,Φk
0 namely,

µ̄Nk,Φk,ξ
0 = λNk , ξ ∈ [0, 1],

for all k ∈ N. We also note that by assumption (1.16) we have supk∈N
´
Rd |x| dλNk(x) <

∞, and therefore (λNk)k∈N is uniformly tight. Hence, by Prokhorov’s theorem there is some
subsequence, which we still denote by the same letter for simplicity, and there is λ ∈ P(Rd)
such that dBL(λ

Nk , λ) → 0. We define the initial datum

µξ0 := λ, ξ ∈ [0, 1],

which is also constant in ξ ∈ [0, 1]. Note that this implies

dp,ν(µ̄
Nk,Φk , µ0) → 0. (6.3)

We finally define µ ∈ C(R+,Pp,ν(Rd × [0, 1])) to be the distributional solution to (2.10)-(2.11)
with given w and initial datum µ0 as in Theorem 4.7.

⋄ Step 2: Comparing µN and µ̄N .

Given ξ ∈ [0, 1], let us fix i ∈ J1, NK such that ξ ∈ INi . Then, we have that µN,ξt = δXN
i (t) and

µ̄N,ξt = λ̄N,it . Then, we have that

dBL(µ
N,ξ
t , µ̄N,ξt ) = dBL(δXN

i (t), λ̄
N,i
t )

= sup
∥ϕ∥BL≤1

ˆ
Rd

ϕ(x) d(δXN
i (t)(x)− λ̄N,it (x))

= sup
∥ϕ∥BL≤1

(
ϕ(XN

i (t))−
ˆ
Rd

ϕ(x) dλ̄N,it (x)

)
= sup

∥ϕ∥BL≤1

ˆ
Rd

(ϕ(XN
i (t))− ϕ(x)) dλ̄N,it (x)
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≤
ˆ
Rd

|XN
i (t)− x| dλ̄N,it (x)

≤ (ENi |XN
i (t)− X̄N

i (t)|p)1/p,

for all 1 ≤ i ≤ N , where ENi = E[· |F̄N
i ] is the expectation conditioned to the natural filtration

(3.2) of X̄N
i , and in the last step we have used Jensen’s inequality. Taking Lp norms we have

dp,ν(µ
N
t , µ̄

N
t ) ≤

(
1

N

N∑
i=1

ENi |XN
i (t)− X̄N

i (t)|p
)1/p

.

Finally, taking global expectation, and by Jensen’s inequality we have

E dp,ν(µNt , µ̄Nt ) ≤

(
1

N

N∑
i=1

EENi |XN
i (t)− X̄N

i (t)|p
)1/p

=

(
1

N

N∑
i=1

E|XN
i (t)− X̄N

i (t)|p
)1/p

,

(6.4)
where in last step we have used the law of iterated expectation E = EENi .

⋄ Step 3: Comparing µ̄Nk,Φk and µ.
First, since µ̄Nk is a distributional solution to (2.10)-(2.11) given wNk by virtue of Lemma
3.6, and since Φk are measure-preserving maps, then µ̄Nk,Φk is also a distributional solution
to (2.10)-(2.11) given wNk,Φk . Therefore, we can use the estability estimate in Theorem 5.1 to
compare it to the distributional solution µ with given w defined in Step 1. Specifically, we
obtain

sup
t∈[0,T ]

dp,ν(µ̄
Nk,Φk
t , µt)

≤ e(Cp+LF )T

(
dp,ν(µ̄

Nk,Φk
0 , µ0) +

D
1/q
∞
LF

d□(w
Nk,Φk , w; (2ℓ∥K̂ℓ∥L1)ℓ∈N)

1/p

)
,

(6.5)

for all T ∈ R+.

⋄ Step 4: Comparing µNk,Φk and µ.
Using the triangle inequality and taking expectations and supremum over t ∈ [0, T ] we have

sup
t∈[0,T ]

Edp,ν(µNk,Φk , µt)

≤ sup
t∈[0,T ]

Edp,ν(µNk,Φk
t , µ̄Nk,Φk

t ) + sup
t∈[0,T ]

dp,ν(µ̄
Nk,Φk , µt)

= sup
t∈[0,T ]

Edp,ν(µNk
t , µ̄Nk

t ) + sup
t∈[0,T ]

dp,ν(µ̄
Nk,Φk , µt)

≤ sup
t∈[0,T ]

(
1

N

N∑
i=1

E|XN
i (t)− X̄N

i (t)|p
)1/p

+ e(Cp+LF )T

(
dp,ν(µ̄

Nk,Φk
0 , µ0) +

D
1/q
∞
LF

d□(w
Nk,Φk , w; (2ℓ∥K̂ℓ∥L1)ℓ∈N)

1/p

)
,

where in the second step we have used that Lp norms are invariant under measure-preserving
rearrangements, and in the last step we have used the control (6.4) from Step 2 and (6.5) from
Step 3. Using the convergence of initial data in (6.3) and the convergence of UR-hypergraphons
in (6.2) which we have by construction of µ0 and w, along with Lemma 3.2 and more particularly
the decay in Remark 3.3, we end the proof. □

The above mean-field limit in Theorem 6.1 is precise enough to retain the full structure in
the limit as N → ∞, and not only averaged obversables like in [39] for extended graphons, and
[13] for dense random graphs. However, by virtue of Proposition 2.19 it is shown that

E dBL(πx#µ
Nk,Φk
t , πx#µt) ≤ E dp,ν(µNk,Φk

t , µt).
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Since πx#µ
Nk,Φk
t = 1

N

∑N
i=1 δXNk

i (t)
reduce to the standard empirical measures, then Theorem

6.1 has the following straightforward consequence.

Corollary 6.3 (Convergence of the empirical measures). Under the assumptions in Theorem

6.1, the standard empirical measures µ̂Nk
t := 1

N

∑N
i=1 δXNk

i (t)
verify

sup
t∈[0,T ]

E dBL(µ̂
Nk
t , µ̂t) → 0,

for all T ∈ R+, and µ̂t = πx#µt ∈ C(R+,P(Rd)-narrow) solves

∂tµ̂t + divx

(ˆ 1

0
Fw[µt](·, ξ)µξt dξ

)
= 0, t ≥ 0, x ∈ Rd. (6.6)

Remark 6.4 (The exchangeable case). The equation (6.6) for the limit µ̂ of empirical measures
is generally not closed as it depends on the full structured limit µ. However, for the all-to-all
UR-hypergraphon wℓ ≡ 1, the system becomes exchangeable and µ̂ solves a closed system

∂tµ̂t + divx(F̂ [µ̂t]µ̂t) = 0, t ≥ 0, x ∈ Rd,

F̂ [µ̂t](x) :=
∞∑
ℓ=1

ˆ
Rdℓ

Kℓ(x, x1, . . . , xℓ) dµ̂t(x1) . . . dµ̂t(xℓ),

which corresponds to the standard Vlasov equation for exchangeable systems.

For the general non-exchangeable case, the above observable µ̂t = πx#µt is only the first level
of a larger hierarchy of observables indexed by directed hypertrees. Namely, the unsigned finite
measure in the divergence term in (6.6) actually has a nice structure, and its evolution involes
higher-order observables that are easy to characterize. Collecting all the family of involved
observables we have the following result, which can be seen as a higher-order extension of the
hierarchy of observables indexed by trees formulated in the binary case in [39, 40].

Remark 6.5 (A hierarchy indexed by hypertrees). Under the assumptions in Theorem 6.1, let
us define the family of observables associated with the limit (w, µ)

τ(H,w, µt)(x1, . . . , x#V (H))

:=

ˆ
[0,1]#V (H)

∏
ℓ∈N

∏
(i;j1,...,jℓ)∈E(H)

wℓ(ξi, ξj1 , . . . , ξjℓ)
∏

i∈V (H)

µξit (xi)
∏

i∈V (H)

dξi,
(6.7)

for H any directed hypertree. Then, τ(H,w, µ) solves the hierarchy of coupled equations

∂tτ(H,w, µt)(x1, . . . , x#V (H))

+

#V (H)∑
i=1

∞∑
ℓ=1

divxi

(ˆ
Rdℓ

Kℓ(xi, y1, . . . , yℓ) τ(H
ℓ
i , w, µt)(x1, . . . , x#V (H), dy1, . . . , dyℓ)

)
= 0,

(6.8)

in distributional sense, where Hℓ
i consist in the new directed hypertree constructed from H by

adding a directed hyperedge of cardinality ℓ+ 1 to the node i ∈ V (H) (see Figure 5).

In [39], the space of pairs (w, µ) was endowed with the topology of the convergence of the
observables (6.7). In this paper, pairs (w, µ) are endowed with the product topology of the cut-
distance on the set of UR-hypergraphons HW and the dp,ν distance on the space of probability

measures Pp,ν(Rd× [0, 1]). At this stage, it is not clear which of them is finer. In particular, an
interesting open question is to characterize whether τ(H,wNk , µNk) → τ(H,w, µ) is implied by
the convergence (6.1), or conversely. We leave this question to future work.

7. Numerical simulations

To illustrate the convergence result of Theorem 1.1, we provide some numerical simulations
based on two examples of hypergraphs presented in Section 2.3. For computational reasons, we
set dimension d = 1, and we only consider hypergraphs of bounded rank r = 3.
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Figure 5. Directed hypertree H with nodes V (H) = {1, 2, 3, 4, 5} and a single
directed hyperedge e = {1; 2, 3, 4, 5}, and associated directed hypertree H3

3 .

7.1. Hypergraph for a homogeneous group of rank 3. Consider the particle system (1.3)
posed on the hypergraph for a homogeneous group of rank 3, that is,

w2,N
ij1j2

=


1

N2
, if maxk1,k2∈{i,j1,j2} |k1 − k2| ≤ θN,

0, otherwise,
(7.1)

for some θ ∈ (0, 1), and wℓ,Nij1···jℓ = 0 for all ℓ ̸= 2 and i, j1, . . . , jℓ ∈ J1, NK. This hypergraph was

introduced in Equation (2.3) in Section 2.3, and is represented in Figure 3 (right).
We also consider the linear interaction kernel given by

K2(x, x1, x2) =
x1+x2

2 − x. (7.2)

A slight simplification of the proof of Proposition A.1 allows to prove that the above sequence
of hypergraphs (7.1) converges as N tends to infinity to the limit UR-hypergraphon (with
actually bounded rank) given by wℓ ≡ 0 for all ℓ ̸= 2, and

w2(ξ0, ξ1, ξ2) =

{
1, if maxi,j∈{0,1,2} |ξi − ξj | ≤ θ,

0, otherwise.
(7.3)

In all that follows, the parameter θ is fixed to the numerical value θ = 0.1. Arguing as our main
Theorem 6.1, we then have that the solution (XN

i )i∈{1,...,N} to (1.3)-(7.1)-(7.2) converges as N
tends to infinity to the solution µ to the Vlasov equation (1.4)-(7.3)-(7.2).

In Figure 6, the solution µ to (1.4)-(7.3)-(7.2) with uniform initial condition µ0 = dξ⌊[0,1] dx⌊[0,1]
is represented for different time steps. The solution was computed using a finite difference
scheme and numerical integration. Notice that due to the attractive nature of the interaction
kernel K2 in (7.2), we observe a concentration phenomenon. Moreover, the convergence speed
seems faster for the central labels ξ ∈ [θ, 1− θ] and slower for edge labels ξ close to 0 or 1. This
differentiated convergence speed can be explained by the hypergraphon w2 in (7.3), which pro-
motes interaction for central labels, and demotes interactions for edge labels. Indeed, an agent
with label ξ ∈ [θ, 1−θ] belongs to all hyperedges (ξ, ξ1, ξ2) such that ξ1, ξ2 ∈ [ξ−θ, ξ+θ]. On the
other hand, an agent with label ξ = 0 belongs to hyperedges (ξ, ξ1, ξ2) such that ξ1, ξ2 ∈ [0, θ],
which reduces its chances of interaction.

Figure 6. Evolution of µt, solution to the limit equation (1.4)-(7.3)-(7.2), at
times t = 0, t = 4, t = 8 and t = 10.
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To compare the solutions of the discrete and continuum systems, in Figure 7 we superimpose
such a solution µt to (1.4)-(7.3)-(7.2) with uniform initial condition on [0, 1]× [0, 1] (represented
by a color gradient) with the solution (XN

i (t))i∈{1,...,N} to (1.3)-(7.1)-(7.2) with initial condition
drawn randomly from the uniform distribution on [0, 1]× [0, 1]. For comparison, in Figure 8 we
also display the binned density computed by summing the number of agents in each square of
dimension 0.1× 0.1.

Figure 7. Evolution of µt, solution to the limit equation (1.4)-(7.3)-(7.2) (color
gradient) at times t = 0, t = 4, t = 8 and t = 10, superimposed with the solution
XN
i (t) of the microscopic system (1.3)-(7.1)-(7.2) for N = 600 (black dots).

Figure 8. Evolution of the solution XN
i (t) of the microscopic system (1.3)-

(7.1)-(7.2) for N = 600 (black dots) at times t = 0, t = 4, t = 8 and t = 10,
together with the binned density obtained by counting the number of agents in
each square of dimension 0.1× 0.1 (color gradient).

In Figure 9, we illustrate the convergence of the empirical measure to the solution of the limit
equation by providing a comparison of the binned density of XN

i at the final time t = 10 for
different numbers of agents: N = 100, N = 200, N = 400 and N = 600.

Figure 9. Solution XN
i (T ) of the microscopic system (1.3)-(7.1)-(7.2) (black

dots) at final time T = 10, together with the binned density obtained by counting
the number of agents in each square of dimension 0.1 × 0.1 (color gradient) for
N = 100, N = 200, N = 400 and N = 600 (left to right).

7.2. Hypergraph for a balanced group of rank 3. We now consider the particle system
(1.3) posed on the hypergraph for a balanced group of rank 3, that is,

w2,N
j0j1j2

= f

(
1

N

∣∣∣∣∣13
2∑

k=0

jk −
N + 1

2

∣∣∣∣∣
)
. (7.4)
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and wℓ,Nij1···jℓ = 0 for all ℓ ̸= 2 and i, j1, · · · , jℓ ∈ J1, NK, where f : [0, 12 ] → R+ is a continuous

decreasing function. This hypergraph was introduced in the example in Equation (2.5) in
Section 2.3, and is represented in Figure 4 (right).

Since f is continuous, it can be shown by Proposition 2.10 (see also Remark 2.12) that
the above sequence of hypergraphs (7.4) converges as N tends to infinity to the limit UR-
hypergraphon (with actually bounded rank) given by wℓ ≡ 0 for all ℓ ̸= 2, and

w2(ξ0, ξ1, ξ2) = f

(∣∣∣∣ξ0 + ξ1 + ξ2
3

− 1

2

∣∣∣∣) . (7.5)

As in the previous section, we consider the linear interaction kernel K2 given by (7.2). The
function f is taken to be the continuous function f : x 7→ 4(x − 1

2)
2. Then, arguing as in

Theorem 6.1 we can show that the particle system (1.3)-(7.4)-(7.2) converges to the solution to
the Vlasov equation (1.4)-(7.5)-(7.2), as a direct application of Proposition 2.10 .

In Figure 10, the solution µ to (1.4)-(7.5)-(7.2) with uniform initial condition µ0 = dξ|[0,1] dx|[0,1]
is represented for different time steps.

Figure 10. Evolution of µt, solution to the limit equation (1.4)-(7.5)-(7.2), at
times t = 0, t = 0.8, t = 1.6 and t = 2.4.

To compare with the solutions to the discrete and continuum systems, in Figure 11 we
superimpose the solution µt to (1.4)-(7.5)-(7.2) with uniform initial condition on [0, 1] × [0, 1]
(represented by a color gradient) with the solution (XN

i (t))i∈{1,...,N} solution to (1.3)-(7.4)-(7.2)
with an initial condition drawn randomly from the uniform distribution on [0, 1] × [0, 1]. For
comparison, in Figure 12 we also display the binned density computed by counting the number
of agents in each square of dimension 0.1× 0.1.

Figure 11. Evolution of µt, solution to the limit equation (1.4)-(7.5)-(7.2)
(color gradient) at times t = 0, t = 0.8, t = 1.6 and t = 2.4, superimposed
with the solution XN

i (t) of the microscopic system (1.3)-(7.4)-(7.2) for N = 300
(black dots).

8. Conclusions and perspectives

In this paper, we derived rigorously the convergence of an interacting particle system with
higher-order interactions toward a Vlasov-type equation on an unbounded-rank hypergraphon.
The convergence was established taking advantage of a natural topology arising from the graph
theory, i.e. the cut-distance, and its corresponding compactness properties. The innovation of
our work lies both in the derivation of a model which allows for unbounded rank interactions,
and in the exploitation of a natural topology coming from graph theory. There are however a
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Figure 12. Evolution of the solution XN
i (t) of the microscopic system (1.3)-

(7.4)-(7.2) for N = 300 (black dots) at times t = 0, t = 0.8, t = 1.6 and t = 2.4,
together with the binned density obtained by counting the number of agents in
each square of dimension 0.1× 0.1 (color gradient).

certain number of directions that we would like to pursue in order to enrich this first result. We
leave these questions to future work.

Firstly, we observe that whilst throughout the paper initial data were only assumed inde-
pendent, in the statement of our main Theorem 6.1 we further impose that they are identically
distributed according to the same law (possibly depending on N but not i). This hypothesis
is only a sufficient condition which helps to prove compactness of initial data. However, it
could be possible to remove the i.i.d. property and also prove compactness of non-constant µ̄N0
associated to independent (but not i.i.d.) initial data XN

1,0, . . . , X
N
N,0, in a compatible way with

the compactness of the UR-hypergraphons wN associated to the finite weights wℓ,Nij1···jℓ .

Secondly, but closely related to the above question, in this paper pairs (w, µ) are endowed
with the product topology of the cut-distance on the set of UR-hypergraphons HW and the
dp,ν distance on the space of probability measures Pp,ν(Rd × [0, 1]), while in [39] the space
of pairs (w, µ) was endowed with the topology of the convergence of observables analogous
to τ(H,w, µ) in (6.7). An interesting open question is to characterize whether the conver-
gence τ(H,wN , µN ) → τ(H,w, µ) for all directed hypertree H is implied by the convergence
δ□(w

N , w) → 0 and dp,ν(µ
N , µ) → 0 in the above-mentioned product topology, or conversely.

Lastly, models for multi-agent dynamics on hypergraphs have recently attracted the atten-
tion of the Physics’ community, with a focus on exploring how equilibrium states and speed
of convergence are influenced by the presence of higher-order interactions (whether it be con-
sensus in opinion dynamics, synchronization in Kuramoto-type oscillator dynamics, or spread
of epidemics in SIR-type models). In that aim, the mean-field formulation provides a main
advantage, as its formalism usually simplifies the study of the multi-agent system’s equilibrium
states. Hence, provided that the long-time behavior of the macroscopic model approximates
well that of the microscopic system, one could infer from it important information concerning
the collective dynamics and the phase transitions of the model.

Appendix A. Convergence of hypergraphs for homogeneous groups

Proposition A.1. Consider the sequence of hypergraphs (HN )N∈N for homogeneous groups

defined for some radius θ ∈ (0, 1) by the hyperedge weights (wℓ,Nij1···jℓ)i,j1,...,jℓ∈J1,NK given by

wℓ,Nij1···jℓ =


1

N ℓ
, if maxk1,k2∈{i,j1,··· ,jℓ} |k1 − k2| ≤ θN,

0, otherwise,

for each N ∈ N and ℓ ∈ J1, N − 1K. Then, (HN )N∈N converges in the labeled cut-distance d□
(and hence also in the unlabeled cut-distance δ□) to the UR-hypergraph w = (wℓ)ℓ∈N given by

wℓ(ξ0, . . . , ξℓ) =

{
1, if maxk1,k2∈{1,...,ℓ} |ξk1 − ξk2 | ≤ θ,

0, otherwise,

for all ℓ ∈ N.
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Proof. We begin by noticing that the sequence of hypergraphs HN can be obtained from the
UR-hypergraphon w = (wℓ)ℓ∈N by evaluating the hypergraphon wℓ on the grid points as in
Proposition 2.10. However, the hypergraphon w does not satisfy the continuity assumption in
Proposition 2.10. We will see that, in this case, convergence of (HN )N∈N still holds.

Consider the piecewise-constant UR-hypergraphon wHN defined from the hypergraph weights
as in Equation (2.2), i.e.

wHN
ℓ (ξ0, ξℓ) = N ℓwℓ,Nij1···jℓ = N ℓ 1

N ℓ
wℓ

(
i− 1

N
, . . . ,

jℓ − 1

N

)
= N ℓ 1

N ℓ
wℓ

(
⌊Nξ0⌋
N

, . . . ,
⌊Nξℓ⌋
N

)
=

{
1, if maxk1,k2∈J0,ℓK

∣∣∣ ⌊Nξk1⌋N − ⌊Nξk2⌋
N

∣∣∣ ≤ θ,

0, otherwise,

for all (i, j1, . . . , jℓ) ∈ J1, NKℓ+1, for all (ξ0, ξ1, . . . , ξℓ) ∈ INi × INj1 × · · · × INjℓ .

We aim to show that limN→∞ ∥wℓ − wHN
ℓ ∥L1(Iℓ+1) = 0 for all ℓ ∈ N. To this end we shall

argue differently for Iℓ+1 \ U and on U , where U is the subset defined by

U :=

{
(ξ0, ξℓ) ∈ Iℓ+1 : θ − 1

N
≤ max

(i,j)∈J0,NK2
|ξi − ξj | ≤ θ +

1

N

}
.

We begin to show that for all (ξ0, ξℓ) ∈ Iℓ+1 \ U , it holds wℓ(ξ0, ξℓ) = wHN
ℓ (ξ0, ξℓ).

Firstly, consider (ξ0, ξℓ) ∈ Iℓ+1 \U , and suppose that max(i,j)∈J0,NK2 |ξi− ξj | < θ− 1
N . Then,

wℓ(ξ0, ξℓ) = 1. Moreover, for all (i, j) ∈ J0, NK2, it holds∣∣∣∣⌊Nξi⌋N
− ⌊Nξj⌋

N

∣∣∣∣ = ∣∣∣∣ξi + {Nξi}
N

− ξj −
{Nξj}
N

∣∣∣∣ ≤ |ξi−ξj |+
1

N
|{ξiN} − {ξjN}| < θ− 1

N
+

1

N
= θ,

where for z ∈ R+, we denoted {z} := z − ⌊z⌋ ∈ [0, 1). Thus from the definition of wHN
ℓ above,

it holds wHN
ℓ (ξ0, ξℓ) = 1 = wℓ(ξ0, ξℓ).

Secondly, if (ξ0, ξℓ) ∈ Iℓ+1 \ U , and suppose that there exists (i, j) ∈ J0, NK2 such that |ξi −
ξj | > r + 1

N , then wℓ(ξ0, ξℓ) = 0. Moreover,∣∣∣∣⌊Nξi⌋N
− ⌊Nξj⌋

N

∣∣∣∣ ≥ ∣∣∣∣|ξi − ξj | −
1

N
|{ξiN} − {ξjN}|

∣∣∣∣ > θ +
1

N
− 1

N
= θ,

so that wHN
ℓ (ξ0, ξℓ) = 0 = wℓ(ξ0, ξℓ).

Then, altogether implies

∥wℓ − wHN
ℓ ∥L1(Iℓ+1) =

ˆ
U
|wℓ(ξ0, ξℓ)− wHN

ℓ (ξ0, ξℓ)| dξ0 d ξℓ ≤
ˆ
U
dξ0 d ξℓ

≤
(
ℓ+ 1
2

) ˆ
Iℓ−1

ˆ
θ− 1

N
≤|ξ0−ξ1|≤θ+ 1

N

dξ0 dξ1 · · · dξℓ ≤
4

N

(
ℓ+ 1
2

)
= 2

ℓ(ℓ+ 1)

N
.

Hence, limN→∞ ∥wℓ − wHN
ℓ ∥L1(Iℓ+1) = 0 for each ℓ ∈ N, and concluding with the dominated

convergence theorem as in Proposition 2.9, we deduce that for any summable sequence (αℓ)ℓ∈N,

it holds limN→∞ d□(wℓ, w
HN
ℓ ; (αℓ)ℓ∈N) = 0. □
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